Ultrathin Planar Microlens Arrays Based on Geometric Metasurface

Ascribing to the properties of two dimensional parallel focusing and imaging, low propagation loss, integration and miniaturization, microlens array has been widely used in imaging, optical communication, organic light emitting devices, adaptive optics, photolithography, biomedical and other applica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annalen der Physik 2018-02, Vol.530 (2), p.n/a
Hauptverfasser: Jin, Jinjin, Zhang, Xiaohu, Gao, Ping, Luo, Jun, Zhang, Zuojun, Li, Xiong, Ma, Xiaoliang, Pu, Mingbo, Luo, Xiangang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Annalen der Physik
container_volume 530
creator Jin, Jinjin
Zhang, Xiaohu
Gao, Ping
Luo, Jun
Zhang, Zuojun
Li, Xiong
Ma, Xiaoliang
Pu, Mingbo
Luo, Xiangang
description Ascribing to the properties of two dimensional parallel focusing and imaging, low propagation loss, integration and miniaturization, microlens array has been widely used in imaging, optical communication, organic light emitting devices, adaptive optics, photolithography, biomedical and other applications. However, the existing traditional microlens array suffers from difficulty in fabrication, large‐thickness, curved surface, non‐uniformity of light spots, or requirement of additional discrete components to control the microlens. Herein, a planar microlens array is experimentally demonstrated based on the geometric metasurface. The single microlens is composed of space‐variant subwavelength metallic gratings with high polarization conversion efficiency and thus exhibits gradient phase distribution. The focused spot diameter of 22.5 μm with radius of 350 μm, focal length of 1 cm and the light spots intensity uniformity of 0.9885 (standard deviation 0.0115) at the focal plane are obtained. Moreover, the broadband property of microlens array is also confirmed. The novel design strategy for microlens array would facilitate the miniaturization of optical devices and be easily integrated in the optical interconnected devices. The microlens array is realized by the ultrathin metasurface, which posses numerous merits including ultrathin (≈λ/10), flat and flexible. Experiment results indicate the uniformity of the focus spots generated by the microlens is high up to 0.9885. This approach may facilitate the applications of the metasurface and advance the high integration of the parallel optical systems.
doi_str_mv 10.1002/andp.201700326
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2002394159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002394159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-e01022c17c4db94a6119093d6b0d47aa00108d98847dd123bc0cd681bec555923</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EElXpymyJOeXOdj68UQoUpBY60NlybEekSpNip0L997gKgpHpvt73TvcQco0wRQB2q1u7nzLAHICz7IyMMGWY8KKQ52QEsRlzEJdkEsI2lpACAyZG5G7T9F73H3VL141utaer2viucW2gM-_1MdB7HZylXUsXrtu53teGrlyvw8FX2rgrclHpJrjJTxyTzdPj-_w5Wb4tXuazZWI45lniAIExg7kRtpRCZ4gSJLdZCVbkWkOcF1YWhcitRcZLA8ZmBZbOpGkqGR-Tm2Hv3nefBxd6te0Ovo0nFYsAuBSYyqiaDqr4QwjeVWrv6532R4WgTqDUCZT6BRUNcjB81Y07_qNWs9eH9Z_3GzUcaoE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002394159</pqid></control><display><type>article</type><title>Ultrathin Planar Microlens Arrays Based on Geometric Metasurface</title><source>Wiley Journals</source><creator>Jin, Jinjin ; Zhang, Xiaohu ; Gao, Ping ; Luo, Jun ; Zhang, Zuojun ; Li, Xiong ; Ma, Xiaoliang ; Pu, Mingbo ; Luo, Xiangang</creator><creatorcontrib>Jin, Jinjin ; Zhang, Xiaohu ; Gao, Ping ; Luo, Jun ; Zhang, Zuojun ; Li, Xiong ; Ma, Xiaoliang ; Pu, Mingbo ; Luo, Xiangang</creatorcontrib><description>Ascribing to the properties of two dimensional parallel focusing and imaging, low propagation loss, integration and miniaturization, microlens array has been widely used in imaging, optical communication, organic light emitting devices, adaptive optics, photolithography, biomedical and other applications. However, the existing traditional microlens array suffers from difficulty in fabrication, large‐thickness, curved surface, non‐uniformity of light spots, or requirement of additional discrete components to control the microlens. Herein, a planar microlens array is experimentally demonstrated based on the geometric metasurface. The single microlens is composed of space‐variant subwavelength metallic gratings with high polarization conversion efficiency and thus exhibits gradient phase distribution. The focused spot diameter of 22.5 μm with radius of 350 μm, focal length of 1 cm and the light spots intensity uniformity of 0.9885 (standard deviation 0.0115) at the focal plane are obtained. Moreover, the broadband property of microlens array is also confirmed. The novel design strategy for microlens array would facilitate the miniaturization of optical devices and be easily integrated in the optical interconnected devices. The microlens array is realized by the ultrathin metasurface, which posses numerous merits including ultrathin (≈λ/10), flat and flexible. Experiment results indicate the uniformity of the focus spots generated by the microlens is high up to 0.9885. This approach may facilitate the applications of the metasurface and advance the high integration of the parallel optical systems.</description><identifier>ISSN: 0003-3804</identifier><identifier>EISSN: 1521-3889</identifier><identifier>DOI: 10.1002/andp.201700326</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adaptive control ; Adaptive optics ; Broadband ; Focal plane ; Gratings (spectra) ; Light spots ; Luminous intensity ; metallic grating ; metasurface ; Metasurfaces ; microlens array ; Microscopes ; Miniaturization ; Optical communication ; Organic light emitting diodes ; Pancharatnam–Berry phase ; Phase distribution ; Photolithography ; Product lines</subject><ispartof>Annalen der Physik, 2018-02, Vol.530 (2), p.n/a</ispartof><rights>2017 by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-e01022c17c4db94a6119093d6b0d47aa00108d98847dd123bc0cd681bec555923</citedby><cites>FETCH-LOGICAL-c3176-e01022c17c4db94a6119093d6b0d47aa00108d98847dd123bc0cd681bec555923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fandp.201700326$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fandp.201700326$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jin, Jinjin</creatorcontrib><creatorcontrib>Zhang, Xiaohu</creatorcontrib><creatorcontrib>Gao, Ping</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Zhang, Zuojun</creatorcontrib><creatorcontrib>Li, Xiong</creatorcontrib><creatorcontrib>Ma, Xiaoliang</creatorcontrib><creatorcontrib>Pu, Mingbo</creatorcontrib><creatorcontrib>Luo, Xiangang</creatorcontrib><title>Ultrathin Planar Microlens Arrays Based on Geometric Metasurface</title><title>Annalen der Physik</title><description>Ascribing to the properties of two dimensional parallel focusing and imaging, low propagation loss, integration and miniaturization, microlens array has been widely used in imaging, optical communication, organic light emitting devices, adaptive optics, photolithography, biomedical and other applications. However, the existing traditional microlens array suffers from difficulty in fabrication, large‐thickness, curved surface, non‐uniformity of light spots, or requirement of additional discrete components to control the microlens. Herein, a planar microlens array is experimentally demonstrated based on the geometric metasurface. The single microlens is composed of space‐variant subwavelength metallic gratings with high polarization conversion efficiency and thus exhibits gradient phase distribution. The focused spot diameter of 22.5 μm with radius of 350 μm, focal length of 1 cm and the light spots intensity uniformity of 0.9885 (standard deviation 0.0115) at the focal plane are obtained. Moreover, the broadband property of microlens array is also confirmed. The novel design strategy for microlens array would facilitate the miniaturization of optical devices and be easily integrated in the optical interconnected devices. The microlens array is realized by the ultrathin metasurface, which posses numerous merits including ultrathin (≈λ/10), flat and flexible. Experiment results indicate the uniformity of the focus spots generated by the microlens is high up to 0.9885. This approach may facilitate the applications of the metasurface and advance the high integration of the parallel optical systems.</description><subject>Adaptive control</subject><subject>Adaptive optics</subject><subject>Broadband</subject><subject>Focal plane</subject><subject>Gratings (spectra)</subject><subject>Light spots</subject><subject>Luminous intensity</subject><subject>metallic grating</subject><subject>metasurface</subject><subject>Metasurfaces</subject><subject>microlens array</subject><subject>Microscopes</subject><subject>Miniaturization</subject><subject>Optical communication</subject><subject>Organic light emitting diodes</subject><subject>Pancharatnam–Berry phase</subject><subject>Phase distribution</subject><subject>Photolithography</subject><subject>Product lines</subject><issn>0003-3804</issn><issn>1521-3889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EElXpymyJOeXOdj68UQoUpBY60NlybEekSpNip0L997gKgpHpvt73TvcQco0wRQB2q1u7nzLAHICz7IyMMGWY8KKQ52QEsRlzEJdkEsI2lpACAyZG5G7T9F73H3VL141utaer2viucW2gM-_1MdB7HZylXUsXrtu53teGrlyvw8FX2rgrclHpJrjJTxyTzdPj-_w5Wb4tXuazZWI45lniAIExg7kRtpRCZ4gSJLdZCVbkWkOcF1YWhcitRcZLA8ZmBZbOpGkqGR-Tm2Hv3nefBxd6te0Ovo0nFYsAuBSYyqiaDqr4QwjeVWrv6532R4WgTqDUCZT6BRUNcjB81Y07_qNWs9eH9Z_3GzUcaoE</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Jin, Jinjin</creator><creator>Zhang, Xiaohu</creator><creator>Gao, Ping</creator><creator>Luo, Jun</creator><creator>Zhang, Zuojun</creator><creator>Li, Xiong</creator><creator>Ma, Xiaoliang</creator><creator>Pu, Mingbo</creator><creator>Luo, Xiangang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201802</creationdate><title>Ultrathin Planar Microlens Arrays Based on Geometric Metasurface</title><author>Jin, Jinjin ; Zhang, Xiaohu ; Gao, Ping ; Luo, Jun ; Zhang, Zuojun ; Li, Xiong ; Ma, Xiaoliang ; Pu, Mingbo ; Luo, Xiangang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-e01022c17c4db94a6119093d6b0d47aa00108d98847dd123bc0cd681bec555923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive control</topic><topic>Adaptive optics</topic><topic>Broadband</topic><topic>Focal plane</topic><topic>Gratings (spectra)</topic><topic>Light spots</topic><topic>Luminous intensity</topic><topic>metallic grating</topic><topic>metasurface</topic><topic>Metasurfaces</topic><topic>microlens array</topic><topic>Microscopes</topic><topic>Miniaturization</topic><topic>Optical communication</topic><topic>Organic light emitting diodes</topic><topic>Pancharatnam–Berry phase</topic><topic>Phase distribution</topic><topic>Photolithography</topic><topic>Product lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Jinjin</creatorcontrib><creatorcontrib>Zhang, Xiaohu</creatorcontrib><creatorcontrib>Gao, Ping</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Zhang, Zuojun</creatorcontrib><creatorcontrib>Li, Xiong</creatorcontrib><creatorcontrib>Ma, Xiaoliang</creatorcontrib><creatorcontrib>Pu, Mingbo</creatorcontrib><creatorcontrib>Luo, Xiangang</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annalen der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Jinjin</au><au>Zhang, Xiaohu</au><au>Gao, Ping</au><au>Luo, Jun</au><au>Zhang, Zuojun</au><au>Li, Xiong</au><au>Ma, Xiaoliang</au><au>Pu, Mingbo</au><au>Luo, Xiangang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin Planar Microlens Arrays Based on Geometric Metasurface</atitle><jtitle>Annalen der Physik</jtitle><date>2018-02</date><risdate>2018</risdate><volume>530</volume><issue>2</issue><epage>n/a</epage><issn>0003-3804</issn><eissn>1521-3889</eissn><abstract>Ascribing to the properties of two dimensional parallel focusing and imaging, low propagation loss, integration and miniaturization, microlens array has been widely used in imaging, optical communication, organic light emitting devices, adaptive optics, photolithography, biomedical and other applications. However, the existing traditional microlens array suffers from difficulty in fabrication, large‐thickness, curved surface, non‐uniformity of light spots, or requirement of additional discrete components to control the microlens. Herein, a planar microlens array is experimentally demonstrated based on the geometric metasurface. The single microlens is composed of space‐variant subwavelength metallic gratings with high polarization conversion efficiency and thus exhibits gradient phase distribution. The focused spot diameter of 22.5 μm with radius of 350 μm, focal length of 1 cm and the light spots intensity uniformity of 0.9885 (standard deviation 0.0115) at the focal plane are obtained. Moreover, the broadband property of microlens array is also confirmed. The novel design strategy for microlens array would facilitate the miniaturization of optical devices and be easily integrated in the optical interconnected devices. The microlens array is realized by the ultrathin metasurface, which posses numerous merits including ultrathin (≈λ/10), flat and flexible. Experiment results indicate the uniformity of the focus spots generated by the microlens is high up to 0.9885. This approach may facilitate the applications of the metasurface and advance the high integration of the parallel optical systems.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/andp.201700326</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-3804
ispartof Annalen der Physik, 2018-02, Vol.530 (2), p.n/a
issn 0003-3804
1521-3889
language eng
recordid cdi_proquest_journals_2002394159
source Wiley Journals
subjects Adaptive control
Adaptive optics
Broadband
Focal plane
Gratings (spectra)
Light spots
Luminous intensity
metallic grating
metasurface
Metasurfaces
microlens array
Microscopes
Miniaturization
Optical communication
Organic light emitting diodes
Pancharatnam–Berry phase
Phase distribution
Photolithography
Product lines
title Ultrathin Planar Microlens Arrays Based on Geometric Metasurface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20Planar%20Microlens%20Arrays%20Based%20on%20Geometric%20Metasurface&rft.jtitle=Annalen%20der%20Physik&rft.au=Jin,%20Jinjin&rft.date=2018-02&rft.volume=530&rft.issue=2&rft.epage=n/a&rft.issn=0003-3804&rft.eissn=1521-3889&rft_id=info:doi/10.1002/andp.201700326&rft_dat=%3Cproquest_cross%3E2002394159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002394159&rft_id=info:pmid/&rfr_iscdi=true