Mixed input and output orientations of Data Envelopment Analysis with Linear Fractional Programming and Least Distance Measures

Data Envelopment Analysis (DEA) is an optimization technique to evaluate the efficiency of Decision- Making Units (DMU’s) together with multiple inputs and multiple outputs on the strength of weighted input and output ratios, where as Linear fractional programming is used to obtain DEA frontier. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics, optimization & information computing optimization & information computing, 2016, Vol.4 (4), p.326
Hauptverfasser: Dar, Qaiser Farooq, Padi, Tirupathi Rao, Tali, Arif Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data Envelopment Analysis (DEA) is an optimization technique to evaluate the efficiency of Decision- Making Units (DMU’s) together with multiple inputs and multiple outputs on the strength of weighted input and output ratios, where as Linear fractional programming is used to obtain DEA frontier. The efficiency scores of DMU obtained through either input orientation or output orientation DEA model will provide only local optimum solution. However, the mixed orientation of input and output variables will provide the global optimal solution for getting the efficient DMUs in DEA. This study has proposed the relationships of a mixed orientation of input and output variables using fractional linear programming along with Least-Distance Measure (LDM). Both constant returns to scale (CRS) and variable returns to scale (VRS) are considered for the comparative study.
ISSN:2311-004X
2310-5070
DOI:10.19139/soic.v4i4.225