A UKF-based approach to estimate parameters of a three-phase synchronous generator model
This paper proposes an approach based on the Unscented Kalman Filter to estimate the parameters of a three-phase synchronous generator model. The developed approach makes use of the trajectory sensitivity functions to assess the influence of the parameters in the model outputs and to classify the pa...
Gespeichert in:
Veröffentlicht in: | Energy systems (Berlin. Periodical) 2018-08, Vol.9 (3), p.573-603 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 603 |
---|---|
container_issue | 3 |
container_start_page | 573 |
container_title | Energy systems (Berlin. Periodical) |
container_volume | 9 |
creator | Geraldi, Edson L. Fernandes, Tatiane C. C. Ramos, Rodrigo A. |
description | This paper proposes an approach based on the Unscented Kalman Filter to estimate the parameters of a three-phase synchronous generator model. The developed approach makes use of the trajectory sensitivity functions to assess the influence of the parameters in the model outputs and to classify the parameters into subgroups. Some of the parameters can only be estimated with the selection of a correct sampling window for the estimation process. This characteristic is taken into account to choose a set of windows for the application of the Unscented Kalman Filter. The covariance matrices of this filter, which are also important for the correct estimation of the parameters, are altered to obtain better results. The assessment of the impact of parameter initial values in the filter is also presented in this work. The signals used in the proposed approach are measured at the terminal bus of the synchronous generator, which eliminates the need of knowing the parameters of the grid. The accuracy of the approach is evaluated by comparing the mean squared error between the measured quantities and the responses of the model. |
doi_str_mv | 10.1007/s12667-018-0280-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2002037983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002037983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4360ff6950bcde38c6a433c9764051a6e3b76158f4ac770dc4d1f67c79bd66653</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EElXpD2CzxGw4x8k5GauKAqISC5XYLMe5tFRtHOx06L_HVRBMTHfDe-_efYzdSriXAPohygxRC5ClgKwEIS_YRJZYClXp4vJ3R33NZjHuAECCzjLACfuY8_XrUtQ2UsNt3wdv3ZYPnlMcPg92IN7bYA80UIjct9zyYRuIRL9NDh5PndsG3_lj5BvqKNjBB37wDe1v2FVr95FmP3PK1svH98WzWL09vSzmK-GUxEHkCqFtsSqgdg2p0qHNlXKVxhwKaZFUrVEWZZtbpzU0Lm9ki9rpqm4QsVBTdjfmpupfx9Ta7PwxdOmkyQAyULoqVVLJUeWCjzFQa_qQ3gsnI8GcGZqRoUkMzZmhkcmTjZ6YtN2Gwl_y_6ZvclpzWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002037983</pqid></control><display><type>article</type><title>A UKF-based approach to estimate parameters of a three-phase synchronous generator model</title><source>SpringerNature Journals</source><creator>Geraldi, Edson L. ; Fernandes, Tatiane C. C. ; Ramos, Rodrigo A.</creator><creatorcontrib>Geraldi, Edson L. ; Fernandes, Tatiane C. C. ; Ramos, Rodrigo A.</creatorcontrib><description>This paper proposes an approach based on the Unscented Kalman Filter to estimate the parameters of a three-phase synchronous generator model. The developed approach makes use of the trajectory sensitivity functions to assess the influence of the parameters in the model outputs and to classify the parameters into subgroups. Some of the parameters can only be estimated with the selection of a correct sampling window for the estimation process. This characteristic is taken into account to choose a set of windows for the application of the Unscented Kalman Filter. The covariance matrices of this filter, which are also important for the correct estimation of the parameters, are altered to obtain better results. The assessment of the impact of parameter initial values in the filter is also presented in this work. The signals used in the proposed approach are measured at the terminal bus of the synchronous generator, which eliminates the need of knowing the parameters of the grid. The accuracy of the approach is evaluated by comparing the mean squared error between the measured quantities and the responses of the model.</description><identifier>ISSN: 1868-3967</identifier><identifier>EISSN: 1868-3975</identifier><identifier>DOI: 10.1007/s12667-018-0280-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Covariance matrix ; Economics and Management ; Energy ; Energy Policy ; Energy Systems ; Error analysis ; Estimating techniques ; Kalman filters ; Mathematical models ; Operations Research/Decision Theory ; Optimization ; Original Paper ; Parameter estimation ; Parameter sensitivity ; Sensitivity analysis ; Subgroups ; Trajectory analysis</subject><ispartof>Energy systems (Berlin. Periodical), 2018-08, Vol.9 (3), p.573-603</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Energy Systems is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4360ff6950bcde38c6a433c9764051a6e3b76158f4ac770dc4d1f67c79bd66653</citedby><cites>FETCH-LOGICAL-c316t-4360ff6950bcde38c6a433c9764051a6e3b76158f4ac770dc4d1f67c79bd66653</cites><orcidid>0000-0002-5972-9977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12667-018-0280-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12667-018-0280-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Geraldi, Edson L.</creatorcontrib><creatorcontrib>Fernandes, Tatiane C. C.</creatorcontrib><creatorcontrib>Ramos, Rodrigo A.</creatorcontrib><title>A UKF-based approach to estimate parameters of a three-phase synchronous generator model</title><title>Energy systems (Berlin. Periodical)</title><addtitle>Energy Syst</addtitle><description>This paper proposes an approach based on the Unscented Kalman Filter to estimate the parameters of a three-phase synchronous generator model. The developed approach makes use of the trajectory sensitivity functions to assess the influence of the parameters in the model outputs and to classify the parameters into subgroups. Some of the parameters can only be estimated with the selection of a correct sampling window for the estimation process. This characteristic is taken into account to choose a set of windows for the application of the Unscented Kalman Filter. The covariance matrices of this filter, which are also important for the correct estimation of the parameters, are altered to obtain better results. The assessment of the impact of parameter initial values in the filter is also presented in this work. The signals used in the proposed approach are measured at the terminal bus of the synchronous generator, which eliminates the need of knowing the parameters of the grid. The accuracy of the approach is evaluated by comparing the mean squared error between the measured quantities and the responses of the model.</description><subject>Covariance matrix</subject><subject>Economics and Management</subject><subject>Energy</subject><subject>Energy Policy</subject><subject>Energy Systems</subject><subject>Error analysis</subject><subject>Estimating techniques</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Parameter sensitivity</subject><subject>Sensitivity analysis</subject><subject>Subgroups</subject><subject>Trajectory analysis</subject><issn>1868-3967</issn><issn>1868-3975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kDFPwzAQhS0EElXpD2CzxGw4x8k5GauKAqISC5XYLMe5tFRtHOx06L_HVRBMTHfDe-_efYzdSriXAPohygxRC5ClgKwEIS_YRJZYClXp4vJ3R33NZjHuAECCzjLACfuY8_XrUtQ2UsNt3wdv3ZYPnlMcPg92IN7bYA80UIjct9zyYRuIRL9NDh5PndsG3_lj5BvqKNjBB37wDe1v2FVr95FmP3PK1svH98WzWL09vSzmK-GUxEHkCqFtsSqgdg2p0qHNlXKVxhwKaZFUrVEWZZtbpzU0Lm9ki9rpqm4QsVBTdjfmpupfx9Ta7PwxdOmkyQAyULoqVVLJUeWCjzFQa_qQ3gsnI8GcGZqRoUkMzZmhkcmTjZ6YtN2Gwl_y_6ZvclpzWA</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Geraldi, Edson L.</creator><creator>Fernandes, Tatiane C. C.</creator><creator>Ramos, Rodrigo A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5972-9977</orcidid></search><sort><creationdate>20180801</creationdate><title>A UKF-based approach to estimate parameters of a three-phase synchronous generator model</title><author>Geraldi, Edson L. ; Fernandes, Tatiane C. C. ; Ramos, Rodrigo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4360ff6950bcde38c6a433c9764051a6e3b76158f4ac770dc4d1f67c79bd66653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Covariance matrix</topic><topic>Economics and Management</topic><topic>Energy</topic><topic>Energy Policy</topic><topic>Energy Systems</topic><topic>Error analysis</topic><topic>Estimating techniques</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Parameter sensitivity</topic><topic>Sensitivity analysis</topic><topic>Subgroups</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geraldi, Edson L.</creatorcontrib><creatorcontrib>Fernandes, Tatiane C. C.</creatorcontrib><creatorcontrib>Ramos, Rodrigo A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Energy systems (Berlin. Periodical)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geraldi, Edson L.</au><au>Fernandes, Tatiane C. C.</au><au>Ramos, Rodrigo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A UKF-based approach to estimate parameters of a three-phase synchronous generator model</atitle><jtitle>Energy systems (Berlin. Periodical)</jtitle><stitle>Energy Syst</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>9</volume><issue>3</issue><spage>573</spage><epage>603</epage><pages>573-603</pages><issn>1868-3967</issn><eissn>1868-3975</eissn><abstract>This paper proposes an approach based on the Unscented Kalman Filter to estimate the parameters of a three-phase synchronous generator model. The developed approach makes use of the trajectory sensitivity functions to assess the influence of the parameters in the model outputs and to classify the parameters into subgroups. Some of the parameters can only be estimated with the selection of a correct sampling window for the estimation process. This characteristic is taken into account to choose a set of windows for the application of the Unscented Kalman Filter. The covariance matrices of this filter, which are also important for the correct estimation of the parameters, are altered to obtain better results. The assessment of the impact of parameter initial values in the filter is also presented in this work. The signals used in the proposed approach are measured at the terminal bus of the synchronous generator, which eliminates the need of knowing the parameters of the grid. The accuracy of the approach is evaluated by comparing the mean squared error between the measured quantities and the responses of the model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12667-018-0280-1</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-5972-9977</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-3967 |
ispartof | Energy systems (Berlin. Periodical), 2018-08, Vol.9 (3), p.573-603 |
issn | 1868-3967 1868-3975 |
language | eng |
recordid | cdi_proquest_journals_2002037983 |
source | SpringerNature Journals |
subjects | Covariance matrix Economics and Management Energy Energy Policy Energy Systems Error analysis Estimating techniques Kalman filters Mathematical models Operations Research/Decision Theory Optimization Original Paper Parameter estimation Parameter sensitivity Sensitivity analysis Subgroups Trajectory analysis |
title | A UKF-based approach to estimate parameters of a three-phase synchronous generator model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20UKF-based%20approach%20to%20estimate%20parameters%20of%20a%20three-phase%20synchronous%20generator%20model&rft.jtitle=Energy%20systems%20(Berlin.%20Periodical)&rft.au=Geraldi,%20Edson%20L.&rft.date=2018-08-01&rft.volume=9&rft.issue=3&rft.spage=573&rft.epage=603&rft.pages=573-603&rft.issn=1868-3967&rft.eissn=1868-3975&rft_id=info:doi/10.1007/s12667-018-0280-1&rft_dat=%3Cproquest_cross%3E2002037983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002037983&rft_id=info:pmid/&rfr_iscdi=true |