A sustainable aqueous Zn-I2 battery
Rechargeable metal-iodine batteries are an emerging attractive electrochemical energy storage technology that combines metallic anodes with halogen cathodes. Such batteries using aqueous electrolytes represent a viable solution for the safety and cost issues associated with organic electrolytes. A h...
Gespeichert in:
Veröffentlicht in: | Nano research 2018-07, Vol.11 (7), p.3548-3554 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3554 |
---|---|
container_issue | 7 |
container_start_page | 3548 |
container_title | Nano research |
container_volume | 11 |
creator | Bai, Chong Cai, Fengshi Wang, Lingchang Guo, Shengqi Liu, Xizheng Yuan, Zhihao |
description | Rechargeable metal-iodine batteries are an emerging attractive electrochemical energy storage technology that combines metallic anodes with halogen cathodes. Such batteries using aqueous electrolytes represent a viable solution for the safety and cost issues associated with organic electrolytes. A hybrid-electrolyte battery architecture has been adopted in a lithium-iodine battery using a solid ceramic membrane that protects the metallic anode from contacting the aqueous electrolyte. Here we demonstrate an eco-friendly, low-cost zinc-iodine battery with an aqueous electrolyte, wherein active I2 is confined in a nanoporous carbon cloth substrate. The electrochemical reaction is confined in the nanopores as a single conversion reaction, thus avoiding the production of I
3
−
intermediates. The cathode architecture fully utilizes the active I
2
, showing a capacity of 255 mAh·g
−1
and low capacity cycling fading. The battery provides an energy density of ∼ 151 Wh·kg
−1
and exhibits an ultrastable cycle life of more than 1,500 cycles. |
doi_str_mv | 10.1007/s12274-017-1920-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2002030670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002030670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2319-54ffb06026d346f78ca7f8cc83791ee10f4c947def80d556efd7cbc9a88178533</originalsourceid><addsrcrecordid>eNp1kDtPAzEQhC0EEiHwA-hOSm3YtX1-lFHEI1IkGmhoLJ_PRonCXbDvivx7HB2Iim12i5nZ0UfILcIdAqj7jIwpQQEVRcOAmjMyQ2M0hTLnvzcycUmuct4BSIZCz8hiWeUxD27buWYfKvc1hn7M1XtH16xq3DCEdLwmF9Htc7j52XPy9vjwunqmm5en9Wq5oZ5xNLQWMTYggcmWCxmV9k5F7b3mymAICFF4I1Qbooa2rmWIrfKNN05rVLrmfE4WU-4h9aVHHuyuH1NXXloGwICDVFBUOKl86nNOIdpD2n66dLQI9sTCTixsYWFPLKwpHjZ5ctF2HyH9Jf9v-gYlQ175</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002030670</pqid></control><display><type>article</type><title>A sustainable aqueous Zn-I2 battery</title><source>SpringerNature Journals</source><creator>Bai, Chong ; Cai, Fengshi ; Wang, Lingchang ; Guo, Shengqi ; Liu, Xizheng ; Yuan, Zhihao</creator><creatorcontrib>Bai, Chong ; Cai, Fengshi ; Wang, Lingchang ; Guo, Shengqi ; Liu, Xizheng ; Yuan, Zhihao</creatorcontrib><description>Rechargeable metal-iodine batteries are an emerging attractive electrochemical energy storage technology that combines metallic anodes with halogen cathodes. Such batteries using aqueous electrolytes represent a viable solution for the safety and cost issues associated with organic electrolytes. A hybrid-electrolyte battery architecture has been adopted in a lithium-iodine battery using a solid ceramic membrane that protects the metallic anode from contacting the aqueous electrolyte. Here we demonstrate an eco-friendly, low-cost zinc-iodine battery with an aqueous electrolyte, wherein active I2 is confined in a nanoporous carbon cloth substrate. The electrochemical reaction is confined in the nanopores as a single conversion reaction, thus avoiding the production of I
3
−
intermediates. The cathode architecture fully utilizes the active I
2
, showing a capacity of 255 mAh·g
−1
and low capacity cycling fading. The battery provides an energy density of ∼ 151 Wh·kg
−1
and exhibits an ultrastable cycle life of more than 1,500 cycles.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1920-9</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Anodes ; Anodic protection ; Aqueous electrolytes ; Architecture ; Atomic/Molecular Structure and Spectra ; Batteries ; Biomedicine ; Biotechnology ; Cathodes ; Chemistry and Materials Science ; Cloth ; Condensed Matter Physics ; Electrochemistry ; Electrolytes ; Energy storage ; Flux density ; Intermediates ; Iodine ; Lithium ; Materials Science ; Nanotechnology ; Nonaqueous electrolytes ; Porosity ; Product safety ; Rechargeable batteries ; Research Article ; Storage batteries ; Substrates ; Zinc</subject><ispartof>Nano research, 2018-07, Vol.11 (7), p.3548-3554</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Nano Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2319-54ffb06026d346f78ca7f8cc83791ee10f4c947def80d556efd7cbc9a88178533</citedby><cites>FETCH-LOGICAL-c2319-54ffb06026d346f78ca7f8cc83791ee10f4c947def80d556efd7cbc9a88178533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-017-1920-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-017-1920-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Bai, Chong</creatorcontrib><creatorcontrib>Cai, Fengshi</creatorcontrib><creatorcontrib>Wang, Lingchang</creatorcontrib><creatorcontrib>Guo, Shengqi</creatorcontrib><creatorcontrib>Liu, Xizheng</creatorcontrib><creatorcontrib>Yuan, Zhihao</creatorcontrib><title>A sustainable aqueous Zn-I2 battery</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Rechargeable metal-iodine batteries are an emerging attractive electrochemical energy storage technology that combines metallic anodes with halogen cathodes. Such batteries using aqueous electrolytes represent a viable solution for the safety and cost issues associated with organic electrolytes. A hybrid-electrolyte battery architecture has been adopted in a lithium-iodine battery using a solid ceramic membrane that protects the metallic anode from contacting the aqueous electrolyte. Here we demonstrate an eco-friendly, low-cost zinc-iodine battery with an aqueous electrolyte, wherein active I2 is confined in a nanoporous carbon cloth substrate. The electrochemical reaction is confined in the nanopores as a single conversion reaction, thus avoiding the production of I
3
−
intermediates. The cathode architecture fully utilizes the active I
2
, showing a capacity of 255 mAh·g
−1
and low capacity cycling fading. The battery provides an energy density of ∼ 151 Wh·kg
−1
and exhibits an ultrastable cycle life of more than 1,500 cycles.</description><subject>Anodes</subject><subject>Anodic protection</subject><subject>Aqueous electrolytes</subject><subject>Architecture</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Batteries</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Cathodes</subject><subject>Chemistry and Materials Science</subject><subject>Cloth</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Intermediates</subject><subject>Iodine</subject><subject>Lithium</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nonaqueous electrolytes</subject><subject>Porosity</subject><subject>Product safety</subject><subject>Rechargeable batteries</subject><subject>Research Article</subject><subject>Storage batteries</subject><subject>Substrates</subject><subject>Zinc</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kDtPAzEQhC0EEiHwA-hOSm3YtX1-lFHEI1IkGmhoLJ_PRonCXbDvivx7HB2Iim12i5nZ0UfILcIdAqj7jIwpQQEVRcOAmjMyQ2M0hTLnvzcycUmuct4BSIZCz8hiWeUxD27buWYfKvc1hn7M1XtH16xq3DCEdLwmF9Htc7j52XPy9vjwunqmm5en9Wq5oZ5xNLQWMTYggcmWCxmV9k5F7b3mymAICFF4I1Qbooa2rmWIrfKNN05rVLrmfE4WU-4h9aVHHuyuH1NXXloGwICDVFBUOKl86nNOIdpD2n66dLQI9sTCTixsYWFPLKwpHjZ5ctF2HyH9Jf9v-gYlQ175</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Bai, Chong</creator><creator>Cai, Fengshi</creator><creator>Wang, Lingchang</creator><creator>Guo, Shengqi</creator><creator>Liu, Xizheng</creator><creator>Yuan, Zhihao</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180701</creationdate><title>A sustainable aqueous Zn-I2 battery</title><author>Bai, Chong ; Cai, Fengshi ; Wang, Lingchang ; Guo, Shengqi ; Liu, Xizheng ; Yuan, Zhihao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2319-54ffb06026d346f78ca7f8cc83791ee10f4c947def80d556efd7cbc9a88178533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodes</topic><topic>Anodic protection</topic><topic>Aqueous electrolytes</topic><topic>Architecture</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Batteries</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Cathodes</topic><topic>Chemistry and Materials Science</topic><topic>Cloth</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Intermediates</topic><topic>Iodine</topic><topic>Lithium</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nonaqueous electrolytes</topic><topic>Porosity</topic><topic>Product safety</topic><topic>Rechargeable batteries</topic><topic>Research Article</topic><topic>Storage batteries</topic><topic>Substrates</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Chong</creatorcontrib><creatorcontrib>Cai, Fengshi</creatorcontrib><creatorcontrib>Wang, Lingchang</creatorcontrib><creatorcontrib>Guo, Shengqi</creatorcontrib><creatorcontrib>Liu, Xizheng</creatorcontrib><creatorcontrib>Yuan, Zhihao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Chong</au><au>Cai, Fengshi</au><au>Wang, Lingchang</au><au>Guo, Shengqi</au><au>Liu, Xizheng</au><au>Yuan, Zhihao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sustainable aqueous Zn-I2 battery</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>11</volume><issue>7</issue><spage>3548</spage><epage>3554</epage><pages>3548-3554</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Rechargeable metal-iodine batteries are an emerging attractive electrochemical energy storage technology that combines metallic anodes with halogen cathodes. Such batteries using aqueous electrolytes represent a viable solution for the safety and cost issues associated with organic electrolytes. A hybrid-electrolyte battery architecture has been adopted in a lithium-iodine battery using a solid ceramic membrane that protects the metallic anode from contacting the aqueous electrolyte. Here we demonstrate an eco-friendly, low-cost zinc-iodine battery with an aqueous electrolyte, wherein active I2 is confined in a nanoporous carbon cloth substrate. The electrochemical reaction is confined in the nanopores as a single conversion reaction, thus avoiding the production of I
3
−
intermediates. The cathode architecture fully utilizes the active I
2
, showing a capacity of 255 mAh·g
−1
and low capacity cycling fading. The battery provides an energy density of ∼ 151 Wh·kg
−1
and exhibits an ultrastable cycle life of more than 1,500 cycles.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1920-9</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2018-07, Vol.11 (7), p.3548-3554 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2002030670 |
source | SpringerNature Journals |
subjects | Anodes Anodic protection Aqueous electrolytes Architecture Atomic/Molecular Structure and Spectra Batteries Biomedicine Biotechnology Cathodes Chemistry and Materials Science Cloth Condensed Matter Physics Electrochemistry Electrolytes Energy storage Flux density Intermediates Iodine Lithium Materials Science Nanotechnology Nonaqueous electrolytes Porosity Product safety Rechargeable batteries Research Article Storage batteries Substrates Zinc |
title | A sustainable aqueous Zn-I2 battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sustainable%20aqueous%20Zn-I2%20battery&rft.jtitle=Nano%20research&rft.au=Bai,%20Chong&rft.date=2018-07-01&rft.volume=11&rft.issue=7&rft.spage=3548&rft.epage=3554&rft.pages=3548-3554&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1920-9&rft_dat=%3Cproquest_cross%3E2002030670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002030670&rft_id=info:pmid/&rfr_iscdi=true |