Implicit regularization of the incomplete oblique projections method
The aim of this paper is to improve the performance of the incomplete oblique projections method (IOP), previously introduced by the authors for solving inconsistent linear systems, when applied to image reconstruction problems. That method employs incomplete oblique projections onto the set of solu...
Gespeichert in:
Veröffentlicht in: | International transactions in operational research 2009-07, Vol.16 (4), p.525-546 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 546 |
---|---|
container_issue | 4 |
container_start_page | 525 |
container_title | International transactions in operational research |
container_volume | 16 |
creator | Scolnik, H. D. Echebest, N. E. Guardarucci, M. T. |
description | The aim of this paper is to improve the performance of the incomplete oblique projections method (IOP), previously introduced by the authors for solving inconsistent linear systems, when applied to image reconstruction problems. That method employs incomplete oblique projections onto the set of solutions of the augmented system Ax−r=b, and converges to a weighted least squares solution of the system Ax=b. Many tomographic image reconstruction problems are such that the limitation of the range of rays makes the model underdetermined, the discretized linear system is rank‐deficient, the nullspace is non‐trivial, and the minimal norm least squares solution may be far away from the true image. In a previous paper, we have added a quadratic term reflecting neighboring pixel information to the standard least squares model for improving the quality of the reconstructed images. In this paper we replace the quadratic function by a more general regularizing function avoiding the modification of the original system. The key idea is to perform a joint optimization of the norm of the residual and of the regularizing function in each iteration. The theoretical properties of this new algorithm are analyzed, and numerical experiments are presented comparing its performance with other well‐known methods. They show that the new approach improves the quality of the reconstructed images. |
doi_str_mv | 10.1111/j.1475-3995.2009.00694.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_200193164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1746618861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4094-41938afab64ee27e685b3b186518d3ab64b9ba22b2b4b05e6fb3e093ffbb5adb3</originalsourceid><addsrcrecordid>eNqNkF9PwjAUxRujiYh-h8b3zXb9s_XBB0UFEpTEoD427eikc1BsRwQ_vZ0Ynr0vvWnP79zbAwDEKMWxruoU05wlRAiWZgiJFCEuaLo9Ar3DwzHoIcFFwhHmp-AshBohhBnOe-BuvFw3trQt9OZ90yhvv1Vr3Qq6CrYLA-2qdFFhWgOdbuznxsC1d7UpO1GAS9Mu3PwcnFSqCebi7-yDl4f72WCUTKbD8eBmkpQUCZpQLEihKqU5NSbLDS-YJhoXnOFiTrprLbTKMp1pqhEzvNLEIEGqSmum5pr0weXeN64QNwmtrN3Gr-JIGb8e3TGnUVTsRaV3IXhTybW3S-V3EiPZRSZr2SUju2Q6TsjfyOQ2otd79Ms2ZvdvTo5n0-fYRT7Z8za0Znvglf-QPCcRfXsaytfRY343zG4lIz8sBIKG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200193164</pqid></control><display><type>article</type><title>Implicit regularization of the incomplete oblique projections method</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Scolnik, H. D. ; Echebest, N. E. ; Guardarucci, M. T.</creator><creatorcontrib>Scolnik, H. D. ; Echebest, N. E. ; Guardarucci, M. T.</creatorcontrib><description>The aim of this paper is to improve the performance of the incomplete oblique projections method (IOP), previously introduced by the authors for solving inconsistent linear systems, when applied to image reconstruction problems. That method employs incomplete oblique projections onto the set of solutions of the augmented system Ax−r=b, and converges to a weighted least squares solution of the system Ax=b. Many tomographic image reconstruction problems are such that the limitation of the range of rays makes the model underdetermined, the discretized linear system is rank‐deficient, the nullspace is non‐trivial, and the minimal norm least squares solution may be far away from the true image. In a previous paper, we have added a quadratic term reflecting neighboring pixel information to the standard least squares model for improving the quality of the reconstructed images. In this paper we replace the quadratic function by a more general regularizing function avoiding the modification of the original system. The key idea is to perform a joint optimization of the norm of the residual and of the regularizing function in each iteration. The theoretical properties of this new algorithm are analyzed, and numerical experiments are presented comparing its performance with other well‐known methods. They show that the new approach improves the quality of the reconstructed images.</description><identifier>ISSN: 0969-6016</identifier><identifier>EISSN: 1475-3995</identifier><identifier>DOI: 10.1111/j.1475-3995.2009.00694.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>computerized tomographies ; image reconstruction ; incomplete projections ; least squares problems ; minimum norm solution ; Operations research ; regularizing ; Studies</subject><ispartof>International transactions in operational research, 2009-07, Vol.16 (4), p.525-546</ispartof><rights>2009 The Authors. Journal compilation © 2009 International Federation of Operational Research Societies</rights><rights>Journal compilation © 2009 International Federation of Operational Research Societies</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4094-41938afab64ee27e685b3b186518d3ab64b9ba22b2b4b05e6fb3e093ffbb5adb3</citedby><cites>FETCH-LOGICAL-c4094-41938afab64ee27e685b3b186518d3ab64b9ba22b2b4b05e6fb3e093ffbb5adb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1475-3995.2009.00694.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1475-3995.2009.00694.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Scolnik, H. D.</creatorcontrib><creatorcontrib>Echebest, N. E.</creatorcontrib><creatorcontrib>Guardarucci, M. T.</creatorcontrib><title>Implicit regularization of the incomplete oblique projections method</title><title>International transactions in operational research</title><description>The aim of this paper is to improve the performance of the incomplete oblique projections method (IOP), previously introduced by the authors for solving inconsistent linear systems, when applied to image reconstruction problems. That method employs incomplete oblique projections onto the set of solutions of the augmented system Ax−r=b, and converges to a weighted least squares solution of the system Ax=b. Many tomographic image reconstruction problems are such that the limitation of the range of rays makes the model underdetermined, the discretized linear system is rank‐deficient, the nullspace is non‐trivial, and the minimal norm least squares solution may be far away from the true image. In a previous paper, we have added a quadratic term reflecting neighboring pixel information to the standard least squares model for improving the quality of the reconstructed images. In this paper we replace the quadratic function by a more general regularizing function avoiding the modification of the original system. The key idea is to perform a joint optimization of the norm of the residual and of the regularizing function in each iteration. The theoretical properties of this new algorithm are analyzed, and numerical experiments are presented comparing its performance with other well‐known methods. They show that the new approach improves the quality of the reconstructed images.</description><subject>computerized tomographies</subject><subject>image reconstruction</subject><subject>incomplete projections</subject><subject>least squares problems</subject><subject>minimum norm solution</subject><subject>Operations research</subject><subject>regularizing</subject><subject>Studies</subject><issn>0969-6016</issn><issn>1475-3995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkF9PwjAUxRujiYh-h8b3zXb9s_XBB0UFEpTEoD427eikc1BsRwQ_vZ0Ynr0vvWnP79zbAwDEKMWxruoU05wlRAiWZgiJFCEuaLo9Ar3DwzHoIcFFwhHmp-AshBohhBnOe-BuvFw3trQt9OZ90yhvv1Vr3Qq6CrYLA-2qdFFhWgOdbuznxsC1d7UpO1GAS9Mu3PwcnFSqCebi7-yDl4f72WCUTKbD8eBmkpQUCZpQLEihKqU5NSbLDS-YJhoXnOFiTrprLbTKMp1pqhEzvNLEIEGqSmum5pr0weXeN64QNwmtrN3Gr-JIGb8e3TGnUVTsRaV3IXhTybW3S-V3EiPZRSZr2SUju2Q6TsjfyOQ2otd79Ms2ZvdvTo5n0-fYRT7Z8za0Znvglf-QPCcRfXsaytfRY343zG4lIz8sBIKG</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Scolnik, H. D.</creator><creator>Echebest, N. E.</creator><creator>Guardarucci, M. T.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200907</creationdate><title>Implicit regularization of the incomplete oblique projections method</title><author>Scolnik, H. D. ; Echebest, N. E. ; Guardarucci, M. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4094-41938afab64ee27e685b3b186518d3ab64b9ba22b2b4b05e6fb3e093ffbb5adb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>computerized tomographies</topic><topic>image reconstruction</topic><topic>incomplete projections</topic><topic>least squares problems</topic><topic>minimum norm solution</topic><topic>Operations research</topic><topic>regularizing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scolnik, H. D.</creatorcontrib><creatorcontrib>Echebest, N. E.</creatorcontrib><creatorcontrib>Guardarucci, M. T.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International transactions in operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scolnik, H. D.</au><au>Echebest, N. E.</au><au>Guardarucci, M. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implicit regularization of the incomplete oblique projections method</atitle><jtitle>International transactions in operational research</jtitle><date>2009-07</date><risdate>2009</risdate><volume>16</volume><issue>4</issue><spage>525</spage><epage>546</epage><pages>525-546</pages><issn>0969-6016</issn><eissn>1475-3995</eissn><abstract>The aim of this paper is to improve the performance of the incomplete oblique projections method (IOP), previously introduced by the authors for solving inconsistent linear systems, when applied to image reconstruction problems. That method employs incomplete oblique projections onto the set of solutions of the augmented system Ax−r=b, and converges to a weighted least squares solution of the system Ax=b. Many tomographic image reconstruction problems are such that the limitation of the range of rays makes the model underdetermined, the discretized linear system is rank‐deficient, the nullspace is non‐trivial, and the minimal norm least squares solution may be far away from the true image. In a previous paper, we have added a quadratic term reflecting neighboring pixel information to the standard least squares model for improving the quality of the reconstructed images. In this paper we replace the quadratic function by a more general regularizing function avoiding the modification of the original system. The key idea is to perform a joint optimization of the norm of the residual and of the regularizing function in each iteration. The theoretical properties of this new algorithm are analyzed, and numerical experiments are presented comparing its performance with other well‐known methods. They show that the new approach improves the quality of the reconstructed images.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1475-3995.2009.00694.x</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-6016 |
ispartof | International transactions in operational research, 2009-07, Vol.16 (4), p.525-546 |
issn | 0969-6016 1475-3995 |
language | eng |
recordid | cdi_proquest_journals_200193164 |
source | EBSCOhost Business Source Complete; Access via Wiley Online Library |
subjects | computerized tomographies image reconstruction incomplete projections least squares problems minimum norm solution Operations research regularizing Studies |
title | Implicit regularization of the incomplete oblique projections method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implicit%20regularization%20of%20the%20incomplete%20oblique%20projections%20method&rft.jtitle=International%20transactions%20in%20operational%20research&rft.au=Scolnik,%20H.%20D.&rft.date=2009-07&rft.volume=16&rft.issue=4&rft.spage=525&rft.epage=546&rft.pages=525-546&rft.issn=0969-6016&rft.eissn=1475-3995&rft_id=info:doi/10.1111/j.1475-3995.2009.00694.x&rft_dat=%3Cproquest_cross%3E1746618861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200193164&rft_id=info:pmid/&rfr_iscdi=true |