Incomplete oblique projections method for solving regularized least-squares problems in image reconstruction

In this paper we improve on the incomplete oblique projections (IOP) method introduced previously by the authors for solving inconsistent linear systems, when applied to image reconstruction problems. That method uses IOP onto the set of solutions of the augmented system Ax−r=b, and converges to a w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International transactions in operational research 2008-07, Vol.15 (4), p.417-438
Hauptverfasser: Scolnik, H. D., Echebest, N. E., Guardarucci, M. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 438
container_issue 4
container_start_page 417
container_title International transactions in operational research
container_volume 15
creator Scolnik, H. D.
Echebest, N. E.
Guardarucci, M. T.
description In this paper we improve on the incomplete oblique projections (IOP) method introduced previously by the authors for solving inconsistent linear systems, when applied to image reconstruction problems. That method uses IOP onto the set of solutions of the augmented system Ax−r=b, and converges to a weighted least‐squares solution of the system Ax=b. In image reconstruction problems, systems are usually inconsistent and very often rank‐deficient because of the underlying discretized model. Here we have considered a regularized least‐squares objective function that can be used in many ways such as incorporating blobs or nearest‐neighbor interactions among adjacent pixels, aiming at smoothing the image. Thus, the oblique incomplete projections algorithm has been modified for solving this regularized model. The theoretical properties of the new algorithm are analyzed and numerical experiments are presented showing that the new approach improves the quality of the reconstructed images.
doi_str_mv 10.1111/j.1475-3995.2008.00643.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_200159799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1496479811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3743-3e02dbb70d5186bce359cb02c79e74429478767173c18c44717ecc9ec28942ba3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEuXxDxb7BDt24njBAiooRRVIPMTSSpxpSXDjYifQ8vU4LWLNbGYk33M9cxHClMQ01HkTUy7SiEmZxgkheUxIxlm83kOjv4d9NCIyk1FGaHaIjrxvCCE0pWKEzLTVdrky0AG2pak_esArZxvQXW1bj5fQvdkKz63D3prPul1gB4veFK7-hgobKHwX-Y--cOAHsDSw9Lhucb0sFhC0Orh0rt_anaCDeWE8nP72Y_Ryc_08vo1mD5Pp-HIWaSY4ixiQpCpLQaqU5lmpgaVSlyTRQoLgPJFc5CITVDBNc815mEBrCTrJJU_Kgh2js51vWCgc5DvV2N614UuVDIdLIWUQ5TuRdtZ7B3O1cmFpt1GUqCFa1aghQTUkOHC52kar1gG92KFftYHNvzk1fX54DFPgox1f-w7Wf3zh3lUmWEBf7ydKjp8mguZ36or9AKockL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200159799</pqid></control><display><type>article</type><title>Incomplete oblique projections method for solving regularized least-squares problems in image reconstruction</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Scolnik, H. D. ; Echebest, N. E. ; Guardarucci, M. T.</creator><creatorcontrib>Scolnik, H. D. ; Echebest, N. E. ; Guardarucci, M. T.</creatorcontrib><description>In this paper we improve on the incomplete oblique projections (IOP) method introduced previously by the authors for solving inconsistent linear systems, when applied to image reconstruction problems. That method uses IOP onto the set of solutions of the augmented system Ax−r=b, and converges to a weighted least‐squares solution of the system Ax=b. In image reconstruction problems, systems are usually inconsistent and very often rank‐deficient because of the underlying discretized model. Here we have considered a regularized least‐squares objective function that can be used in many ways such as incorporating blobs or nearest‐neighbor interactions among adjacent pixels, aiming at smoothing the image. Thus, the oblique incomplete projections algorithm has been modified for solving this regularized model. The theoretical properties of the new algorithm are analyzed and numerical experiments are presented showing that the new approach improves the quality of the reconstructed images.</description><identifier>ISSN: 0969-6016</identifier><identifier>EISSN: 1475-3995</identifier><identifier>DOI: 10.1111/j.1475-3995.2008.00643.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Algorithms ; computerized tomography ; Image coding ; image reconstruction ; incomplete projections ; least-squares problems ; minimum norm solution ; Operations research ; regularization ; Studies</subject><ispartof>International transactions in operational research, 2008-07, Vol.15 (4), p.417-438</ispartof><rights>2008 The Authors. Journal compilation © 2008 International Federation of Operational Research Societies</rights><rights>Journal compilation © 2008 International Federation of Operational Research Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3743-3e02dbb70d5186bce359cb02c79e74429478767173c18c44717ecc9ec28942ba3</citedby><cites>FETCH-LOGICAL-c3743-3e02dbb70d5186bce359cb02c79e74429478767173c18c44717ecc9ec28942ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1475-3995.2008.00643.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1475-3995.2008.00643.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Scolnik, H. D.</creatorcontrib><creatorcontrib>Echebest, N. E.</creatorcontrib><creatorcontrib>Guardarucci, M. T.</creatorcontrib><title>Incomplete oblique projections method for solving regularized least-squares problems in image reconstruction</title><title>International transactions in operational research</title><description>In this paper we improve on the incomplete oblique projections (IOP) method introduced previously by the authors for solving inconsistent linear systems, when applied to image reconstruction problems. That method uses IOP onto the set of solutions of the augmented system Ax−r=b, and converges to a weighted least‐squares solution of the system Ax=b. In image reconstruction problems, systems are usually inconsistent and very often rank‐deficient because of the underlying discretized model. Here we have considered a regularized least‐squares objective function that can be used in many ways such as incorporating blobs or nearest‐neighbor interactions among adjacent pixels, aiming at smoothing the image. Thus, the oblique incomplete projections algorithm has been modified for solving this regularized model. The theoretical properties of the new algorithm are analyzed and numerical experiments are presented showing that the new approach improves the quality of the reconstructed images.</description><subject>Algorithms</subject><subject>computerized tomography</subject><subject>Image coding</subject><subject>image reconstruction</subject><subject>incomplete projections</subject><subject>least-squares problems</subject><subject>minimum norm solution</subject><subject>Operations research</subject><subject>regularization</subject><subject>Studies</subject><issn>0969-6016</issn><issn>1475-3995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEuXxDxb7BDt24njBAiooRRVIPMTSSpxpSXDjYifQ8vU4LWLNbGYk33M9cxHClMQ01HkTUy7SiEmZxgkheUxIxlm83kOjv4d9NCIyk1FGaHaIjrxvCCE0pWKEzLTVdrky0AG2pak_esArZxvQXW1bj5fQvdkKz63D3prPul1gB4veFK7-hgobKHwX-Y--cOAHsDSw9Lhucb0sFhC0Orh0rt_anaCDeWE8nP72Y_Ryc_08vo1mD5Pp-HIWaSY4ixiQpCpLQaqU5lmpgaVSlyTRQoLgPJFc5CITVDBNc815mEBrCTrJJU_Kgh2js51vWCgc5DvV2N614UuVDIdLIWUQ5TuRdtZ7B3O1cmFpt1GUqCFa1aghQTUkOHC52kar1gG92KFftYHNvzk1fX54DFPgox1f-w7Wf3zh3lUmWEBf7ydKjp8mguZ36or9AKockL4</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Scolnik, H. D.</creator><creator>Echebest, N. E.</creator><creator>Guardarucci, M. T.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200807</creationdate><title>Incomplete oblique projections method for solving regularized least-squares problems in image reconstruction</title><author>Scolnik, H. D. ; Echebest, N. E. ; Guardarucci, M. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3743-3e02dbb70d5186bce359cb02c79e74429478767173c18c44717ecc9ec28942ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>computerized tomography</topic><topic>Image coding</topic><topic>image reconstruction</topic><topic>incomplete projections</topic><topic>least-squares problems</topic><topic>minimum norm solution</topic><topic>Operations research</topic><topic>regularization</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scolnik, H. D.</creatorcontrib><creatorcontrib>Echebest, N. E.</creatorcontrib><creatorcontrib>Guardarucci, M. T.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International transactions in operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scolnik, H. D.</au><au>Echebest, N. E.</au><au>Guardarucci, M. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incomplete oblique projections method for solving regularized least-squares problems in image reconstruction</atitle><jtitle>International transactions in operational research</jtitle><date>2008-07</date><risdate>2008</risdate><volume>15</volume><issue>4</issue><spage>417</spage><epage>438</epage><pages>417-438</pages><issn>0969-6016</issn><eissn>1475-3995</eissn><abstract>In this paper we improve on the incomplete oblique projections (IOP) method introduced previously by the authors for solving inconsistent linear systems, when applied to image reconstruction problems. That method uses IOP onto the set of solutions of the augmented system Ax−r=b, and converges to a weighted least‐squares solution of the system Ax=b. In image reconstruction problems, systems are usually inconsistent and very often rank‐deficient because of the underlying discretized model. Here we have considered a regularized least‐squares objective function that can be used in many ways such as incorporating blobs or nearest‐neighbor interactions among adjacent pixels, aiming at smoothing the image. Thus, the oblique incomplete projections algorithm has been modified for solving this regularized model. The theoretical properties of the new algorithm are analyzed and numerical experiments are presented showing that the new approach improves the quality of the reconstructed images.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1475-3995.2008.00643.x</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-6016
ispartof International transactions in operational research, 2008-07, Vol.15 (4), p.417-438
issn 0969-6016
1475-3995
language eng
recordid cdi_proquest_journals_200159799
source EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects Algorithms
computerized tomography
Image coding
image reconstruction
incomplete projections
least-squares problems
minimum norm solution
Operations research
regularization
Studies
title Incomplete oblique projections method for solving regularized least-squares problems in image reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incomplete%20oblique%20projections%20method%20for%20solving%20regularized%20least-squares%20problems%20in%20image%20reconstruction&rft.jtitle=International%20transactions%20in%20operational%20research&rft.au=Scolnik,%20H.%20D.&rft.date=2008-07&rft.volume=15&rft.issue=4&rft.spage=417&rft.epage=438&rft.pages=417-438&rft.issn=0969-6016&rft.eissn=1475-3995&rft_id=info:doi/10.1111/j.1475-3995.2008.00643.x&rft_dat=%3Cproquest_cross%3E1496479811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200159799&rft_id=info:pmid/&rfr_iscdi=true