Analytical solutions for the minimum weight design of trusses by cylindrical algebraic decomposition

In this study, a method for the analytical evaluation of globally optimal solutions for the minimum weight design of trusses is presented. The basis of the methodology is the cylindrical algebraic decomposition algorithm, in tandem with powerful symbolic computation for the discovery of stationary p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive of applied mechanics (1991) 2018-02, Vol.88 (1-2), p.39-49
Hauptverfasser: Charalampakis, A. E., Chatzigiannelis, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 1-2
container_start_page 39
container_title Archive of applied mechanics (1991)
container_volume 88
creator Charalampakis, A. E.
Chatzigiannelis, I.
description In this study, a method for the analytical evaluation of globally optimal solutions for the minimum weight design of trusses is presented. The basis of the methodology is the cylindrical algebraic decomposition algorithm, in tandem with powerful symbolic computation for the discovery of stationary points. Certain final answers to well-known benchmark problems are produced, while future improvements in both the algorithm implementation and the computer capabilities may allow the solution of even more difficult problems. To the best of our knowledge, no similar attempt can be found in the literature.
doi_str_mv 10.1007/s00419-017-1271-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001479700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001479700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-420e1e352057dc4f1434def29ebfb3d360161fc0ca06f9478a1a59bc7410251b3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcB19X3mrZpl8PgFwy40XVI06SToW3GpEX6781YwZWrtzn3cN8l5BbhHgH4QwDIsEoAeYIpx6Q8IyvMWJpAUeI5WUHFqgRzxi7JVQgHiHiewoo0m0F282iV7Ghw3TRaNwRqnKfjXtPeDrafevqlbbsfaaODbQfqDB39FIIOtJ6pmjs7NP7HILtW115aFVHl-qML9iS8JhdGdkHf_N41-Xh6fN--JLu359ftZpcohsWYZClo1Cz2ynmjMhP7Z402aaVrU7OGFYAFGgVKQmGqjJcSZV7VimcIaY41W5O7xXv07nPSYRQHN_n4YBApAGa84gCRwoVS3oXgtRFHb3vpZ4EgTmOKZUwRxxSnMUUZM-mSCZEdWu3_zP-HvgGGBHhf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001479700</pqid></control><display><type>article</type><title>Analytical solutions for the minimum weight design of trusses by cylindrical algebraic decomposition</title><source>SpringerLink Journals - AutoHoldings</source><creator>Charalampakis, A. E. ; Chatzigiannelis, I.</creator><creatorcontrib>Charalampakis, A. E. ; Chatzigiannelis, I.</creatorcontrib><description>In this study, a method for the analytical evaluation of globally optimal solutions for the minimum weight design of trusses is presented. The basis of the methodology is the cylindrical algebraic decomposition algorithm, in tandem with powerful symbolic computation for the discovery of stationary points. Certain final answers to well-known benchmark problems are produced, while future improvements in both the algorithm implementation and the computer capabilities may allow the solution of even more difficult problems. To the best of our knowledge, no similar attempt can be found in the literature.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-017-1271-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Classical Mechanics ; Decomposition ; Engineering ; Minimum weight design ; Special ; Theoretical and Applied Mechanics ; Trusses</subject><ispartof>Archive of applied mechanics (1991), 2018-02, Vol.88 (1-2), p.39-49</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-420e1e352057dc4f1434def29ebfb3d360161fc0ca06f9478a1a59bc7410251b3</citedby><cites>FETCH-LOGICAL-c316t-420e1e352057dc4f1434def29ebfb3d360161fc0ca06f9478a1a59bc7410251b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-017-1271-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-017-1271-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Charalampakis, A. E.</creatorcontrib><creatorcontrib>Chatzigiannelis, I.</creatorcontrib><title>Analytical solutions for the minimum weight design of trusses by cylindrical algebraic decomposition</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>In this study, a method for the analytical evaluation of globally optimal solutions for the minimum weight design of trusses is presented. The basis of the methodology is the cylindrical algebraic decomposition algorithm, in tandem with powerful symbolic computation for the discovery of stationary points. Certain final answers to well-known benchmark problems are produced, while future improvements in both the algorithm implementation and the computer capabilities may allow the solution of even more difficult problems. To the best of our knowledge, no similar attempt can be found in the literature.</description><subject>Algebra</subject><subject>Classical Mechanics</subject><subject>Decomposition</subject><subject>Engineering</subject><subject>Minimum weight design</subject><subject>Special</subject><subject>Theoretical and Applied Mechanics</subject><subject>Trusses</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcB19X3mrZpl8PgFwy40XVI06SToW3GpEX6781YwZWrtzn3cN8l5BbhHgH4QwDIsEoAeYIpx6Q8IyvMWJpAUeI5WUHFqgRzxi7JVQgHiHiewoo0m0F282iV7Ghw3TRaNwRqnKfjXtPeDrafevqlbbsfaaODbQfqDB39FIIOtJ6pmjs7NP7HILtW115aFVHl-qML9iS8JhdGdkHf_N41-Xh6fN--JLu359ftZpcohsWYZClo1Cz2ynmjMhP7Z402aaVrU7OGFYAFGgVKQmGqjJcSZV7VimcIaY41W5O7xXv07nPSYRQHN_n4YBApAGa84gCRwoVS3oXgtRFHb3vpZ4EgTmOKZUwRxxSnMUUZM-mSCZEdWu3_zP-HvgGGBHhf</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Charalampakis, A. E.</creator><creator>Chatzigiannelis, I.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>Analytical solutions for the minimum weight design of trusses by cylindrical algebraic decomposition</title><author>Charalampakis, A. E. ; Chatzigiannelis, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-420e1e352057dc4f1434def29ebfb3d360161fc0ca06f9478a1a59bc7410251b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Classical Mechanics</topic><topic>Decomposition</topic><topic>Engineering</topic><topic>Minimum weight design</topic><topic>Special</topic><topic>Theoretical and Applied Mechanics</topic><topic>Trusses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charalampakis, A. E.</creatorcontrib><creatorcontrib>Chatzigiannelis, I.</creatorcontrib><collection>CrossRef</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charalampakis, A. E.</au><au>Chatzigiannelis, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical solutions for the minimum weight design of trusses by cylindrical algebraic decomposition</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>88</volume><issue>1-2</issue><spage>39</spage><epage>49</epage><pages>39-49</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>In this study, a method for the analytical evaluation of globally optimal solutions for the minimum weight design of trusses is presented. The basis of the methodology is the cylindrical algebraic decomposition algorithm, in tandem with powerful symbolic computation for the discovery of stationary points. Certain final answers to well-known benchmark problems are produced, while future improvements in both the algorithm implementation and the computer capabilities may allow the solution of even more difficult problems. To the best of our knowledge, no similar attempt can be found in the literature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-017-1271-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0939-1533
ispartof Archive of applied mechanics (1991), 2018-02, Vol.88 (1-2), p.39-49
issn 0939-1533
1432-0681
language eng
recordid cdi_proquest_journals_2001479700
source SpringerLink Journals - AutoHoldings
subjects Algebra
Classical Mechanics
Decomposition
Engineering
Minimum weight design
Special
Theoretical and Applied Mechanics
Trusses
title Analytical solutions for the minimum weight design of trusses by cylindrical algebraic decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20solutions%20for%20the%20minimum%20weight%20design%20of%20trusses%20by%20cylindrical%20algebraic%20decomposition&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Charalampakis,%20A.%20E.&rft.date=2018-02-01&rft.volume=88&rft.issue=1-2&rft.spage=39&rft.epage=49&rft.pages=39-49&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-017-1271-8&rft_dat=%3Cproquest_cross%3E2001479700%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001479700&rft_id=info:pmid/&rfr_iscdi=true