Walnut-inspired microsized porous silicon/graphene core-shell composites for high-performance lithium-ion battery anodes
Silicon is considered an exceptionally promising alternative to the most commonly used material, graphite, as an anode for next-generation lithium-ion batteries, as it has high energy density owing to its high theoretical capacity and abundant storage. Here, microsized walnut-like porous silicon/red...
Gespeichert in:
Veröffentlicht in: | Nano research 2017-12, Vol.10 (12), p.4274-4283 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4283 |
---|---|
container_issue | 12 |
container_start_page | 4274 |
container_title | Nano research |
container_volume | 10 |
creator | Zhai, Wei Ai, Qing Chen, Lina Wei, Shiyuan Li, Deping Zhang, Lin Si, Pengchao Feng, Jinkui Ci, Lijie |
description | Silicon is considered an exceptionally promising alternative to the most commonly used material, graphite, as an anode for next-generation lithium-ion batteries, as it has high energy density owing to its high theoretical capacity and abundant storage. Here, microsized walnut-like porous silicon/reduced graphene oxide (P-Si/rGO) core-shell composites are successfully prepared via in situ reduction followed by a dealloying process. The composites show specific capacities of more than 2,100 mAh-g-1 at a current density of 1,000 mA-g-1, 1,600 mAh.g-1 at 2,000 mA-g-1, 1,500 mAh-g 1 at 3,000 mA-g-1, 1,200 mAh-g-1 at 4,000 mA.g-1, and 950 mAh.g~ at 5,000 mA.g-~, and maintain a value of 1,258 mAh.g-~ after 300 cycles at a current density of 1,000 mA-g 1. Their excellent rate performance and cycling stability can be attributed to the unique structural design: 1) The graphene shell dramatically improves the conductivity and stabilizes the solid- electrolyte interface layers; 2) the inner porous structure supplies sufficient space for silicon expansion; 3) the nanostructure of silicon can prevent the pulverization resulting from volume expansion stress. Notably, this in situ reduction method can be applied as a universal formula to coat graphene on almost all types of metals and alloys of various sizes, shapes, and compositions without adding any reagents to afford energy storage materials, graphene-based catalytic materials, graphene-enhanced composites, etc. |
doi_str_mv | 10.1007/s12274-017-1584-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001477711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673910539</cqvip_id><sourcerecordid>2001477711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-3c84b58db38a5e6edc074c2218a777f710b3f964fb58368069e377201a20683e3</originalsourceid><addsrcrecordid>eNp9kD9PwzAUxCMEElD4AGwRzAY_24mdESH-SZVYQIyWm740Romd2olE-fS4aoENL77hd3d6l2UXQK-BUnkTgTEpCAVJoFCCFAfZCVSVIjS9wx8NTBxnpzF-UFoyEOok-3w3nZtGYl0cbMBl3ts6-Gi_khx88FPMo-1s7d3NKpihRYd57QOS2GLXJdkPiR4x5o0PeWtXLRkwJN0bV2Pe2bG1U0-sd_nCjCOGTW6cX2I8y44a00U83_-z7O3h_vXuicxfHp_vbuek5oKPhNdKLAq1XHBlCixxWVMpasZAGSllI4EueFOVokkQLxUtK-RSMgqG0VJx5LPsapc7BL-eMI76w0_BpUrNKAWRUgASBTtqe3wM2Ogh2N6EjQaqtwPr3cA6Day3A-siedjOExPrVhj-kv8zXe6LWu9W6-T7bSolr4AWvOLfzSCLOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001477711</pqid></control><display><type>article</type><title>Walnut-inspired microsized porous silicon/graphene core-shell composites for high-performance lithium-ion battery anodes</title><source>SpringerLink Journals</source><creator>Zhai, Wei ; Ai, Qing ; Chen, Lina ; Wei, Shiyuan ; Li, Deping ; Zhang, Lin ; Si, Pengchao ; Feng, Jinkui ; Ci, Lijie</creator><creatorcontrib>Zhai, Wei ; Ai, Qing ; Chen, Lina ; Wei, Shiyuan ; Li, Deping ; Zhang, Lin ; Si, Pengchao ; Feng, Jinkui ; Ci, Lijie</creatorcontrib><description>Silicon is considered an exceptionally promising alternative to the most commonly used material, graphite, as an anode for next-generation lithium-ion batteries, as it has high energy density owing to its high theoretical capacity and abundant storage. Here, microsized walnut-like porous silicon/reduced graphene oxide (P-Si/rGO) core-shell composites are successfully prepared via in situ reduction followed by a dealloying process. The composites show specific capacities of more than 2,100 mAh-g-1 at a current density of 1,000 mA-g-1, 1,600 mAh.g-1 at 2,000 mA-g-1, 1,500 mAh-g 1 at 3,000 mA-g-1, 1,200 mAh-g-1 at 4,000 mA.g-1, and 950 mAh.g~ at 5,000 mA.g-~, and maintain a value of 1,258 mAh.g-~ after 300 cycles at a current density of 1,000 mA-g 1. Their excellent rate performance and cycling stability can be attributed to the unique structural design: 1) The graphene shell dramatically improves the conductivity and stabilizes the solid- electrolyte interface layers; 2) the inner porous structure supplies sufficient space for silicon expansion; 3) the nanostructure of silicon can prevent the pulverization resulting from volume expansion stress. Notably, this in situ reduction method can be applied as a universal formula to coat graphene on almost all types of metals and alloys of various sizes, shapes, and compositions without adding any reagents to afford energy storage materials, graphene-based catalytic materials, graphene-enhanced composites, etc.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1584-5</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Anodes ; Atomic/Molecular Structure and Spectra ; Batteries ; Biomedicine ; Biotechnology ; Catalysis ; Chemistry and Materials Science ; Condensed Matter Physics ; Current density ; Energy storage ; Flux density ; Graphene ; Lithium ; Lithium-ion batteries ; Materials Science ; Metals ; Nanotechnology ; Particulate composites ; Porous silicon ; Reagents ; Rechargeable batteries ; Research Article ; Silicon ; Structural design ; Structural engineering ; Walnuts</subject><ispartof>Nano research, 2017-12, Vol.10 (12), p.4274-4283</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany 2017</rights><rights>Nano Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-3c84b58db38a5e6edc074c2218a777f710b3f964fb58368069e377201a20683e3</citedby><cites>FETCH-LOGICAL-c343t-3c84b58db38a5e6edc074c2218a777f710b3f964fb58368069e377201a20683e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-017-1584-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-017-1584-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhai, Wei</creatorcontrib><creatorcontrib>Ai, Qing</creatorcontrib><creatorcontrib>Chen, Lina</creatorcontrib><creatorcontrib>Wei, Shiyuan</creatorcontrib><creatorcontrib>Li, Deping</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Si, Pengchao</creatorcontrib><creatorcontrib>Feng, Jinkui</creatorcontrib><creatorcontrib>Ci, Lijie</creatorcontrib><title>Walnut-inspired microsized porous silicon/graphene core-shell composites for high-performance lithium-ion battery anodes</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>Silicon is considered an exceptionally promising alternative to the most commonly used material, graphite, as an anode for next-generation lithium-ion batteries, as it has high energy density owing to its high theoretical capacity and abundant storage. Here, microsized walnut-like porous silicon/reduced graphene oxide (P-Si/rGO) core-shell composites are successfully prepared via in situ reduction followed by a dealloying process. The composites show specific capacities of more than 2,100 mAh-g-1 at a current density of 1,000 mA-g-1, 1,600 mAh.g-1 at 2,000 mA-g-1, 1,500 mAh-g 1 at 3,000 mA-g-1, 1,200 mAh-g-1 at 4,000 mA.g-1, and 950 mAh.g~ at 5,000 mA.g-~, and maintain a value of 1,258 mAh.g-~ after 300 cycles at a current density of 1,000 mA-g 1. Their excellent rate performance and cycling stability can be attributed to the unique structural design: 1) The graphene shell dramatically improves the conductivity and stabilizes the solid- electrolyte interface layers; 2) the inner porous structure supplies sufficient space for silicon expansion; 3) the nanostructure of silicon can prevent the pulverization resulting from volume expansion stress. Notably, this in situ reduction method can be applied as a universal formula to coat graphene on almost all types of metals and alloys of various sizes, shapes, and compositions without adding any reagents to afford energy storage materials, graphene-based catalytic materials, graphene-enhanced composites, etc.</description><subject>Anodes</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Batteries</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Current density</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Graphene</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Nanotechnology</subject><subject>Particulate composites</subject><subject>Porous silicon</subject><subject>Reagents</subject><subject>Rechargeable batteries</subject><subject>Research Article</subject><subject>Silicon</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>Walnuts</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD9PwzAUxCMEElD4AGwRzAY_24mdESH-SZVYQIyWm740Romd2olE-fS4aoENL77hd3d6l2UXQK-BUnkTgTEpCAVJoFCCFAfZCVSVIjS9wx8NTBxnpzF-UFoyEOok-3w3nZtGYl0cbMBl3ts6-Gi_khx88FPMo-1s7d3NKpihRYd57QOS2GLXJdkPiR4x5o0PeWtXLRkwJN0bV2Pe2bG1U0-sd_nCjCOGTW6cX2I8y44a00U83_-z7O3h_vXuicxfHp_vbuek5oKPhNdKLAq1XHBlCixxWVMpasZAGSllI4EueFOVokkQLxUtK-RSMgqG0VJx5LPsapc7BL-eMI76w0_BpUrNKAWRUgASBTtqe3wM2Ogh2N6EjQaqtwPr3cA6Day3A-siedjOExPrVhj-kv8zXe6LWu9W6-T7bSolr4AWvOLfzSCLOg</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Zhai, Wei</creator><creator>Ai, Qing</creator><creator>Chen, Lina</creator><creator>Wei, Shiyuan</creator><creator>Li, Deping</creator><creator>Zhang, Lin</creator><creator>Si, Pengchao</creator><creator>Feng, Jinkui</creator><creator>Ci, Lijie</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20171201</creationdate><title>Walnut-inspired microsized porous silicon/graphene core-shell composites for high-performance lithium-ion battery anodes</title><author>Zhai, Wei ; Ai, Qing ; Chen, Lina ; Wei, Shiyuan ; Li, Deping ; Zhang, Lin ; Si, Pengchao ; Feng, Jinkui ; Ci, Lijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-3c84b58db38a5e6edc074c2218a777f710b3f964fb58368069e377201a20683e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anodes</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Batteries</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Current density</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Graphene</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Nanotechnology</topic><topic>Particulate composites</topic><topic>Porous silicon</topic><topic>Reagents</topic><topic>Rechargeable batteries</topic><topic>Research Article</topic><topic>Silicon</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>Walnuts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Wei</creatorcontrib><creatorcontrib>Ai, Qing</creatorcontrib><creatorcontrib>Chen, Lina</creatorcontrib><creatorcontrib>Wei, Shiyuan</creatorcontrib><creatorcontrib>Li, Deping</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Si, Pengchao</creatorcontrib><creatorcontrib>Feng, Jinkui</creatorcontrib><creatorcontrib>Ci, Lijie</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Wei</au><au>Ai, Qing</au><au>Chen, Lina</au><au>Wei, Shiyuan</au><au>Li, Deping</au><au>Zhang, Lin</au><au>Si, Pengchao</au><au>Feng, Jinkui</au><au>Ci, Lijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Walnut-inspired microsized porous silicon/graphene core-shell composites for high-performance lithium-ion battery anodes</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>10</volume><issue>12</issue><spage>4274</spage><epage>4283</epage><pages>4274-4283</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Silicon is considered an exceptionally promising alternative to the most commonly used material, graphite, as an anode for next-generation lithium-ion batteries, as it has high energy density owing to its high theoretical capacity and abundant storage. Here, microsized walnut-like porous silicon/reduced graphene oxide (P-Si/rGO) core-shell composites are successfully prepared via in situ reduction followed by a dealloying process. The composites show specific capacities of more than 2,100 mAh-g-1 at a current density of 1,000 mA-g-1, 1,600 mAh.g-1 at 2,000 mA-g-1, 1,500 mAh-g 1 at 3,000 mA-g-1, 1,200 mAh-g-1 at 4,000 mA.g-1, and 950 mAh.g~ at 5,000 mA.g-~, and maintain a value of 1,258 mAh.g-~ after 300 cycles at a current density of 1,000 mA-g 1. Their excellent rate performance and cycling stability can be attributed to the unique structural design: 1) The graphene shell dramatically improves the conductivity and stabilizes the solid- electrolyte interface layers; 2) the inner porous structure supplies sufficient space for silicon expansion; 3) the nanostructure of silicon can prevent the pulverization resulting from volume expansion stress. Notably, this in situ reduction method can be applied as a universal formula to coat graphene on almost all types of metals and alloys of various sizes, shapes, and compositions without adding any reagents to afford energy storage materials, graphene-based catalytic materials, graphene-enhanced composites, etc.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1584-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2017-12, Vol.10 (12), p.4274-4283 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2001477711 |
source | SpringerLink Journals |
subjects | Anodes Atomic/Molecular Structure and Spectra Batteries Biomedicine Biotechnology Catalysis Chemistry and Materials Science Condensed Matter Physics Current density Energy storage Flux density Graphene Lithium Lithium-ion batteries Materials Science Metals Nanotechnology Particulate composites Porous silicon Reagents Rechargeable batteries Research Article Silicon Structural design Structural engineering Walnuts |
title | Walnut-inspired microsized porous silicon/graphene core-shell composites for high-performance lithium-ion battery anodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Walnut-inspired%20microsized%20porous%20silicon/graphene%20core-shell%20composites%20for%20high-performance%20lithium-ion%20battery%20anodes&rft.jtitle=Nano%20research&rft.au=Zhai,%20Wei&rft.date=2017-12-01&rft.volume=10&rft.issue=12&rft.spage=4274&rft.epage=4283&rft.pages=4274-4283&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1584-5&rft_dat=%3Cproquest_cross%3E2001477711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001477711&rft_id=info:pmid/&rft_cqvip_id=673910539&rfr_iscdi=true |