Walnut-inspired microsized porous silicon/graphene core-shell composites for high-performance lithium-ion battery anodes

Silicon is considered an exceptionally promising alternative to the most commonly used material, graphite, as an anode for next-generation lithium-ion batteries, as it has high energy density owing to its high theoretical capacity and abundant storage. Here, microsized walnut-like porous silicon/red...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2017-12, Vol.10 (12), p.4274-4283
Hauptverfasser: Zhai, Wei, Ai, Qing, Chen, Lina, Wei, Shiyuan, Li, Deping, Zhang, Lin, Si, Pengchao, Feng, Jinkui, Ci, Lijie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4283
container_issue 12
container_start_page 4274
container_title Nano research
container_volume 10
creator Zhai, Wei
Ai, Qing
Chen, Lina
Wei, Shiyuan
Li, Deping
Zhang, Lin
Si, Pengchao
Feng, Jinkui
Ci, Lijie
description Silicon is considered an exceptionally promising alternative to the most commonly used material, graphite, as an anode for next-generation lithium-ion batteries, as it has high energy density owing to its high theoretical capacity and abundant storage. Here, microsized walnut-like porous silicon/reduced graphene oxide (P-Si/rGO) core-shell composites are successfully prepared via in situ reduction followed by a dealloying process. The composites show specific capacities of more than 2,100 mAh-g-1 at a current density of 1,000 mA-g-1, 1,600 mAh.g-1 at 2,000 mA-g-1, 1,500 mAh-g 1 at 3,000 mA-g-1, 1,200 mAh-g-1 at 4,000 mA.g-1, and 950 mAh.g~ at 5,000 mA.g-~, and maintain a value of 1,258 mAh.g-~ after 300 cycles at a current density of 1,000 mA-g 1. Their excellent rate performance and cycling stability can be attributed to the unique structural design: 1) The graphene shell dramatically improves the conductivity and stabilizes the solid- electrolyte interface layers; 2) the inner porous structure supplies sufficient space for silicon expansion; 3) the nanostructure of silicon can prevent the pulverization resulting from volume expansion stress. Notably, this in situ reduction method can be applied as a universal formula to coat graphene on almost all types of metals and alloys of various sizes, shapes, and compositions without adding any reagents to afford energy storage materials, graphene-based catalytic materials, graphene-enhanced composites, etc.
doi_str_mv 10.1007/s12274-017-1584-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001477711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673910539</cqvip_id><sourcerecordid>2001477711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-3c84b58db38a5e6edc074c2218a777f710b3f964fb58368069e377201a20683e3</originalsourceid><addsrcrecordid>eNp9kD9PwzAUxCMEElD4AGwRzAY_24mdESH-SZVYQIyWm740Romd2olE-fS4aoENL77hd3d6l2UXQK-BUnkTgTEpCAVJoFCCFAfZCVSVIjS9wx8NTBxnpzF-UFoyEOok-3w3nZtGYl0cbMBl3ts6-Gi_khx88FPMo-1s7d3NKpihRYd57QOS2GLXJdkPiR4x5o0PeWtXLRkwJN0bV2Pe2bG1U0-sd_nCjCOGTW6cX2I8y44a00U83_-z7O3h_vXuicxfHp_vbuek5oKPhNdKLAq1XHBlCixxWVMpasZAGSllI4EueFOVokkQLxUtK-RSMgqG0VJx5LPsapc7BL-eMI76w0_BpUrNKAWRUgASBTtqe3wM2Ogh2N6EjQaqtwPr3cA6Day3A-siedjOExPrVhj-kv8zXe6LWu9W6-T7bSolr4AWvOLfzSCLOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001477711</pqid></control><display><type>article</type><title>Walnut-inspired microsized porous silicon/graphene core-shell composites for high-performance lithium-ion battery anodes</title><source>SpringerLink Journals</source><creator>Zhai, Wei ; Ai, Qing ; Chen, Lina ; Wei, Shiyuan ; Li, Deping ; Zhang, Lin ; Si, Pengchao ; Feng, Jinkui ; Ci, Lijie</creator><creatorcontrib>Zhai, Wei ; Ai, Qing ; Chen, Lina ; Wei, Shiyuan ; Li, Deping ; Zhang, Lin ; Si, Pengchao ; Feng, Jinkui ; Ci, Lijie</creatorcontrib><description>Silicon is considered an exceptionally promising alternative to the most commonly used material, graphite, as an anode for next-generation lithium-ion batteries, as it has high energy density owing to its high theoretical capacity and abundant storage. Here, microsized walnut-like porous silicon/reduced graphene oxide (P-Si/rGO) core-shell composites are successfully prepared via in situ reduction followed by a dealloying process. The composites show specific capacities of more than 2,100 mAh-g-1 at a current density of 1,000 mA-g-1, 1,600 mAh.g-1 at 2,000 mA-g-1, 1,500 mAh-g 1 at 3,000 mA-g-1, 1,200 mAh-g-1 at 4,000 mA.g-1, and 950 mAh.g~ at 5,000 mA.g-~, and maintain a value of 1,258 mAh.g-~ after 300 cycles at a current density of 1,000 mA-g 1. Their excellent rate performance and cycling stability can be attributed to the unique structural design: 1) The graphene shell dramatically improves the conductivity and stabilizes the solid- electrolyte interface layers; 2) the inner porous structure supplies sufficient space for silicon expansion; 3) the nanostructure of silicon can prevent the pulverization resulting from volume expansion stress. Notably, this in situ reduction method can be applied as a universal formula to coat graphene on almost all types of metals and alloys of various sizes, shapes, and compositions without adding any reagents to afford energy storage materials, graphene-based catalytic materials, graphene-enhanced composites, etc.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1584-5</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Anodes ; Atomic/Molecular Structure and Spectra ; Batteries ; Biomedicine ; Biotechnology ; Catalysis ; Chemistry and Materials Science ; Condensed Matter Physics ; Current density ; Energy storage ; Flux density ; Graphene ; Lithium ; Lithium-ion batteries ; Materials Science ; Metals ; Nanotechnology ; Particulate composites ; Porous silicon ; Reagents ; Rechargeable batteries ; Research Article ; Silicon ; Structural design ; Structural engineering ; Walnuts</subject><ispartof>Nano research, 2017-12, Vol.10 (12), p.4274-4283</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany 2017</rights><rights>Nano Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-3c84b58db38a5e6edc074c2218a777f710b3f964fb58368069e377201a20683e3</citedby><cites>FETCH-LOGICAL-c343t-3c84b58db38a5e6edc074c2218a777f710b3f964fb58368069e377201a20683e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-017-1584-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-017-1584-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhai, Wei</creatorcontrib><creatorcontrib>Ai, Qing</creatorcontrib><creatorcontrib>Chen, Lina</creatorcontrib><creatorcontrib>Wei, Shiyuan</creatorcontrib><creatorcontrib>Li, Deping</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Si, Pengchao</creatorcontrib><creatorcontrib>Feng, Jinkui</creatorcontrib><creatorcontrib>Ci, Lijie</creatorcontrib><title>Walnut-inspired microsized porous silicon/graphene core-shell composites for high-performance lithium-ion battery anodes</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>Silicon is considered an exceptionally promising alternative to the most commonly used material, graphite, as an anode for next-generation lithium-ion batteries, as it has high energy density owing to its high theoretical capacity and abundant storage. Here, microsized walnut-like porous silicon/reduced graphene oxide (P-Si/rGO) core-shell composites are successfully prepared via in situ reduction followed by a dealloying process. The composites show specific capacities of more than 2,100 mAh-g-1 at a current density of 1,000 mA-g-1, 1,600 mAh.g-1 at 2,000 mA-g-1, 1,500 mAh-g 1 at 3,000 mA-g-1, 1,200 mAh-g-1 at 4,000 mA.g-1, and 950 mAh.g~ at 5,000 mA.g-~, and maintain a value of 1,258 mAh.g-~ after 300 cycles at a current density of 1,000 mA-g 1. Their excellent rate performance and cycling stability can be attributed to the unique structural design: 1) The graphene shell dramatically improves the conductivity and stabilizes the solid- electrolyte interface layers; 2) the inner porous structure supplies sufficient space for silicon expansion; 3) the nanostructure of silicon can prevent the pulverization resulting from volume expansion stress. Notably, this in situ reduction method can be applied as a universal formula to coat graphene on almost all types of metals and alloys of various sizes, shapes, and compositions without adding any reagents to afford energy storage materials, graphene-based catalytic materials, graphene-enhanced composites, etc.</description><subject>Anodes</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Batteries</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Current density</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Graphene</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Nanotechnology</subject><subject>Particulate composites</subject><subject>Porous silicon</subject><subject>Reagents</subject><subject>Rechargeable batteries</subject><subject>Research Article</subject><subject>Silicon</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>Walnuts</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD9PwzAUxCMEElD4AGwRzAY_24mdESH-SZVYQIyWm740Romd2olE-fS4aoENL77hd3d6l2UXQK-BUnkTgTEpCAVJoFCCFAfZCVSVIjS9wx8NTBxnpzF-UFoyEOok-3w3nZtGYl0cbMBl3ts6-Gi_khx88FPMo-1s7d3NKpihRYd57QOS2GLXJdkPiR4x5o0PeWtXLRkwJN0bV2Pe2bG1U0-sd_nCjCOGTW6cX2I8y44a00U83_-z7O3h_vXuicxfHp_vbuek5oKPhNdKLAq1XHBlCixxWVMpasZAGSllI4EueFOVokkQLxUtK-RSMgqG0VJx5LPsapc7BL-eMI76w0_BpUrNKAWRUgASBTtqe3wM2Ogh2N6EjQaqtwPr3cA6Day3A-siedjOExPrVhj-kv8zXe6LWu9W6-T7bSolr4AWvOLfzSCLOg</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Zhai, Wei</creator><creator>Ai, Qing</creator><creator>Chen, Lina</creator><creator>Wei, Shiyuan</creator><creator>Li, Deping</creator><creator>Zhang, Lin</creator><creator>Si, Pengchao</creator><creator>Feng, Jinkui</creator><creator>Ci, Lijie</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20171201</creationdate><title>Walnut-inspired microsized porous silicon/graphene core-shell composites for high-performance lithium-ion battery anodes</title><author>Zhai, Wei ; Ai, Qing ; Chen, Lina ; Wei, Shiyuan ; Li, Deping ; Zhang, Lin ; Si, Pengchao ; Feng, Jinkui ; Ci, Lijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-3c84b58db38a5e6edc074c2218a777f710b3f964fb58368069e377201a20683e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anodes</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Batteries</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Current density</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Graphene</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Nanotechnology</topic><topic>Particulate composites</topic><topic>Porous silicon</topic><topic>Reagents</topic><topic>Rechargeable batteries</topic><topic>Research Article</topic><topic>Silicon</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>Walnuts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Wei</creatorcontrib><creatorcontrib>Ai, Qing</creatorcontrib><creatorcontrib>Chen, Lina</creatorcontrib><creatorcontrib>Wei, Shiyuan</creatorcontrib><creatorcontrib>Li, Deping</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Si, Pengchao</creatorcontrib><creatorcontrib>Feng, Jinkui</creatorcontrib><creatorcontrib>Ci, Lijie</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Wei</au><au>Ai, Qing</au><au>Chen, Lina</au><au>Wei, Shiyuan</au><au>Li, Deping</au><au>Zhang, Lin</au><au>Si, Pengchao</au><au>Feng, Jinkui</au><au>Ci, Lijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Walnut-inspired microsized porous silicon/graphene core-shell composites for high-performance lithium-ion battery anodes</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>10</volume><issue>12</issue><spage>4274</spage><epage>4283</epage><pages>4274-4283</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Silicon is considered an exceptionally promising alternative to the most commonly used material, graphite, as an anode for next-generation lithium-ion batteries, as it has high energy density owing to its high theoretical capacity and abundant storage. Here, microsized walnut-like porous silicon/reduced graphene oxide (P-Si/rGO) core-shell composites are successfully prepared via in situ reduction followed by a dealloying process. The composites show specific capacities of more than 2,100 mAh-g-1 at a current density of 1,000 mA-g-1, 1,600 mAh.g-1 at 2,000 mA-g-1, 1,500 mAh-g 1 at 3,000 mA-g-1, 1,200 mAh-g-1 at 4,000 mA.g-1, and 950 mAh.g~ at 5,000 mA.g-~, and maintain a value of 1,258 mAh.g-~ after 300 cycles at a current density of 1,000 mA-g 1. Their excellent rate performance and cycling stability can be attributed to the unique structural design: 1) The graphene shell dramatically improves the conductivity and stabilizes the solid- electrolyte interface layers; 2) the inner porous structure supplies sufficient space for silicon expansion; 3) the nanostructure of silicon can prevent the pulverization resulting from volume expansion stress. Notably, this in situ reduction method can be applied as a universal formula to coat graphene on almost all types of metals and alloys of various sizes, shapes, and compositions without adding any reagents to afford energy storage materials, graphene-based catalytic materials, graphene-enhanced composites, etc.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1584-5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2017-12, Vol.10 (12), p.4274-4283
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2001477711
source SpringerLink Journals
subjects Anodes
Atomic/Molecular Structure and Spectra
Batteries
Biomedicine
Biotechnology
Catalysis
Chemistry and Materials Science
Condensed Matter Physics
Current density
Energy storage
Flux density
Graphene
Lithium
Lithium-ion batteries
Materials Science
Metals
Nanotechnology
Particulate composites
Porous silicon
Reagents
Rechargeable batteries
Research Article
Silicon
Structural design
Structural engineering
Walnuts
title Walnut-inspired microsized porous silicon/graphene core-shell composites for high-performance lithium-ion battery anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Walnut-inspired%20microsized%20porous%20silicon/graphene%20core-shell%20composites%20for%20high-performance%20lithium-ion%20battery%20anodes&rft.jtitle=Nano%20research&rft.au=Zhai,%20Wei&rft.date=2017-12-01&rft.volume=10&rft.issue=12&rft.spage=4274&rft.epage=4283&rft.pages=4274-4283&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1584-5&rft_dat=%3Cproquest_cross%3E2001477711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001477711&rft_id=info:pmid/&rft_cqvip_id=673910539&rfr_iscdi=true