High-performance heterogeneous complementary inverters based on n-channel MoS2 and p-channel SWCNT transistors
Heterogeneous complementary inverters composed of bi-layer molybdenum disulfide (MoS2) and single-walled carbon-nanotube (SWCNT) networks are designed, and n-type MoS2/p-type SWCNT inverters are fabricated with a backgated structure. Field-effect transistors (FETs) based on the MoS2 and SWCNT networ...
Gespeichert in:
Veröffentlicht in: | Nano research 2017, Vol.10 (1), p.276-283 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 283 |
---|---|
container_issue | 1 |
container_start_page | 276 |
container_title | Nano research |
container_volume | 10 |
creator | Li, Zhixin Xie, Dan Dai, Ruixuan Xu, Jianlong Sun, Yilin Sun, Mengxing Zhang, Cheng Li, Xian |
description | Heterogeneous complementary inverters composed of bi-layer molybdenum disulfide (MoS2) and single-walled carbon-nanotube (SWCNT) networks are designed, and n-type MoS2/p-type SWCNT inverters are fabricated with a backgated structure. Field-effect transistors (FETs) based on the MoS2 and SWCNT networks show high electrical performance with large ON/OFF ratios up to 106 and 105 for MoS2 and SWCNT, respectively. The MoS2/SWCNT complementary inverters exhibit Vin-Vout signal matching and achieve excellent performances with a high peak voltage gain of 15, a low static-power consumption of a few nanowatts, and a high noise margin of 0.45VDD, which are suitable for future logic-circuit applications. The inverter performances are affected by the channel width-to-length ratios (W/L) of the MOSR-FETs and SWCNT-FETs. Therefore, W/L should be optimized to achieve a tradeoff between the gain and the power consumption. |
doi_str_mv | 10.1007/s12274-016-1286-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001476792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>670976790</cqvip_id><sourcerecordid>2001476792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-1e3c4bec3af226e4b517a19de2b66221c57b886ba7927d73563cf3779822e22b3</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhjdGE-vHD_BG9IzCQGH3aBq1JlUP1ngkLJ3tR1rYwtbEfy9Na705FybD-8wLb1FccXbLGdN3iQNoSRlXlEOpqDwqeryqSspyHf_2HORpcZbSgjEFXJa9wg_n0xltMTYhrqx3SGbYYQxT9Bg2ibiwape4Qt_Z-E3m_gtjvk6ktgknJHjiqZtZ73FJXsI7EOsnpD2M3j8Hr2PSRevTPHUhpovipLHLhJf787z4eHwYD4Z09Pb0PLgfUSek6ChH4WSNTtgGQKGs-1xbXk0QaqUAuOvruixVbXUFeqJFXwnXCK2rEgABanFe3Oz2tjGsN5g6swib6LOlAca41CqTWcV3KhdDShEb08b5Kn_UcGa2sZpdrCbHaraxGpkZ2DEpa_0U49_m_6DrvdEs-Ok6cwcnpVm1fQ0TP_JChoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001476792</pqid></control><display><type>article</type><title>High-performance heterogeneous complementary inverters based on n-channel MoS2 and p-channel SWCNT transistors</title><source>SpringerLink Journals</source><creator>Li, Zhixin ; Xie, Dan ; Dai, Ruixuan ; Xu, Jianlong ; Sun, Yilin ; Sun, Mengxing ; Zhang, Cheng ; Li, Xian</creator><creatorcontrib>Li, Zhixin ; Xie, Dan ; Dai, Ruixuan ; Xu, Jianlong ; Sun, Yilin ; Sun, Mengxing ; Zhang, Cheng ; Li, Xian</creatorcontrib><description>Heterogeneous complementary inverters composed of bi-layer molybdenum disulfide (MoS2) and single-walled carbon-nanotube (SWCNT) networks are designed, and n-type MoS2/p-type SWCNT inverters are fabricated with a backgated structure. Field-effect transistors (FETs) based on the MoS2 and SWCNT networks show high electrical performance with large ON/OFF ratios up to 106 and 105 for MoS2 and SWCNT, respectively. The MoS2/SWCNT complementary inverters exhibit Vin-Vout signal matching and achieve excellent performances with a high peak voltage gain of 15, a low static-power consumption of a few nanowatts, and a high noise margin of 0.45VDD, which are suitable for future logic-circuit applications. The inverter performances are affected by the channel width-to-length ratios (W/L) of the MOSR-FETs and SWCNT-FETs. Therefore, W/L should be optimized to achieve a tradeoff between the gain and the power consumption.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-016-1286-4</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Field effect transistors ; Inverters ; Materials Science ; Molybdenum ; Molybdenum disulfide ; Nanotechnology ; Nanotubes ; Power consumption ; Research Article ; Semiconductor devices ; Single wall carbon nanotubes ; Transistors ; Voltage gain</subject><ispartof>Nano research, 2017, Vol.10 (1), p.276-283</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Nano Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-1e3c4bec3af226e4b517a19de2b66221c57b886ba7927d73563cf3779822e22b3</citedby><cites>FETCH-LOGICAL-c343t-1e3c4bec3af226e4b517a19de2b66221c57b886ba7927d73563cf3779822e22b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-016-1286-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-016-1286-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,4009,27902,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Li, Zhixin</creatorcontrib><creatorcontrib>Xie, Dan</creatorcontrib><creatorcontrib>Dai, Ruixuan</creatorcontrib><creatorcontrib>Xu, Jianlong</creatorcontrib><creatorcontrib>Sun, Yilin</creatorcontrib><creatorcontrib>Sun, Mengxing</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Li, Xian</creatorcontrib><title>High-performance heterogeneous complementary inverters based on n-channel MoS2 and p-channel SWCNT transistors</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>Heterogeneous complementary inverters composed of bi-layer molybdenum disulfide (MoS2) and single-walled carbon-nanotube (SWCNT) networks are designed, and n-type MoS2/p-type SWCNT inverters are fabricated with a backgated structure. Field-effect transistors (FETs) based on the MoS2 and SWCNT networks show high electrical performance with large ON/OFF ratios up to 106 and 105 for MoS2 and SWCNT, respectively. The MoS2/SWCNT complementary inverters exhibit Vin-Vout signal matching and achieve excellent performances with a high peak voltage gain of 15, a low static-power consumption of a few nanowatts, and a high noise margin of 0.45VDD, which are suitable for future logic-circuit applications. The inverter performances are affected by the channel width-to-length ratios (W/L) of the MOSR-FETs and SWCNT-FETs. Therefore, W/L should be optimized to achieve a tradeoff between the gain and the power consumption.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Field effect transistors</subject><subject>Inverters</subject><subject>Materials Science</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Power consumption</subject><subject>Research Article</subject><subject>Semiconductor devices</subject><subject>Single wall carbon nanotubes</subject><subject>Transistors</subject><subject>Voltage gain</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1PAyEQhjdGE-vHD_BG9IzCQGH3aBq1JlUP1ngkLJ3tR1rYwtbEfy9Na705FybD-8wLb1FccXbLGdN3iQNoSRlXlEOpqDwqeryqSspyHf_2HORpcZbSgjEFXJa9wg_n0xltMTYhrqx3SGbYYQxT9Bg2ibiwape4Qt_Z-E3m_gtjvk6ktgknJHjiqZtZ73FJXsI7EOsnpD2M3j8Hr2PSRevTPHUhpovipLHLhJf787z4eHwYD4Z09Pb0PLgfUSek6ChH4WSNTtgGQKGs-1xbXk0QaqUAuOvruixVbXUFeqJFXwnXCK2rEgABanFe3Oz2tjGsN5g6swib6LOlAca41CqTWcV3KhdDShEb08b5Kn_UcGa2sZpdrCbHaraxGpkZ2DEpa_0U49_m_6DrvdEs-Ok6cwcnpVm1fQ0TP_JChoA</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Li, Zhixin</creator><creator>Xie, Dan</creator><creator>Dai, Ruixuan</creator><creator>Xu, Jianlong</creator><creator>Sun, Yilin</creator><creator>Sun, Mengxing</creator><creator>Zhang, Cheng</creator><creator>Li, Xian</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2017</creationdate><title>High-performance heterogeneous complementary inverters based on n-channel MoS2 and p-channel SWCNT transistors</title><author>Li, Zhixin ; Xie, Dan ; Dai, Ruixuan ; Xu, Jianlong ; Sun, Yilin ; Sun, Mengxing ; Zhang, Cheng ; Li, Xian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-1e3c4bec3af226e4b517a19de2b66221c57b886ba7927d73563cf3779822e22b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Field effect transistors</topic><topic>Inverters</topic><topic>Materials Science</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Power consumption</topic><topic>Research Article</topic><topic>Semiconductor devices</topic><topic>Single wall carbon nanotubes</topic><topic>Transistors</topic><topic>Voltage gain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhixin</creatorcontrib><creatorcontrib>Xie, Dan</creatorcontrib><creatorcontrib>Dai, Ruixuan</creatorcontrib><creatorcontrib>Xu, Jianlong</creatorcontrib><creatorcontrib>Sun, Yilin</creatorcontrib><creatorcontrib>Sun, Mengxing</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Li, Xian</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhixin</au><au>Xie, Dan</au><au>Dai, Ruixuan</au><au>Xu, Jianlong</au><au>Sun, Yilin</au><au>Sun, Mengxing</au><au>Zhang, Cheng</au><au>Li, Xian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance heterogeneous complementary inverters based on n-channel MoS2 and p-channel SWCNT transistors</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2017</date><risdate>2017</risdate><volume>10</volume><issue>1</issue><spage>276</spage><epage>283</epage><pages>276-283</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Heterogeneous complementary inverters composed of bi-layer molybdenum disulfide (MoS2) and single-walled carbon-nanotube (SWCNT) networks are designed, and n-type MoS2/p-type SWCNT inverters are fabricated with a backgated structure. Field-effect transistors (FETs) based on the MoS2 and SWCNT networks show high electrical performance with large ON/OFF ratios up to 106 and 105 for MoS2 and SWCNT, respectively. The MoS2/SWCNT complementary inverters exhibit Vin-Vout signal matching and achieve excellent performances with a high peak voltage gain of 15, a low static-power consumption of a few nanowatts, and a high noise margin of 0.45VDD, which are suitable for future logic-circuit applications. The inverter performances are affected by the channel width-to-length ratios (W/L) of the MOSR-FETs and SWCNT-FETs. Therefore, W/L should be optimized to achieve a tradeoff between the gain and the power consumption.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-016-1286-4</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2017, Vol.10 (1), p.276-283 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2001476792 |
source | SpringerLink Journals |
subjects | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Condensed Matter Physics Field effect transistors Inverters Materials Science Molybdenum Molybdenum disulfide Nanotechnology Nanotubes Power consumption Research Article Semiconductor devices Single wall carbon nanotubes Transistors Voltage gain |
title | High-performance heterogeneous complementary inverters based on n-channel MoS2 and p-channel SWCNT transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A18%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20heterogeneous%20complementary%20inverters%20based%20on%20n-channel%20MoS2%20and%20p-channel%20SWCNT%20transistors&rft.jtitle=Nano%20research&rft.au=Li,%20Zhixin&rft.date=2017&rft.volume=10&rft.issue=1&rft.spage=276&rft.epage=283&rft.pages=276-283&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-016-1286-4&rft_dat=%3Cproquest_cross%3E2001476792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001476792&rft_id=info:pmid/&rft_cqvip_id=670976790&rfr_iscdi=true |