Hierarchical MoS2 intercalated clay hybrid nanosheets with enhanced catalytic activity

Emerging hierarchical MoS2/pillared-montmorillonite (MoS2/PMMT) hybrid nanosheets were successfully prepared through facile in-situ hydrothermal synthesis of MoS2 within the interlayer of cetyltrimethylammonium bromide PMMT, and their catalytic performance was evaluated by the reduction reaction of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2017-02, Vol.10 (2), p.570-583
Hauptverfasser: Peng, Kang, Fu, Liangjie, Yang, Huaming, Ouyang, Jing, Tang, Aidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Emerging hierarchical MoS2/pillared-montmorillonite (MoS2/PMMT) hybrid nanosheets were successfully prepared through facile in-situ hydrothermal synthesis of MoS2 within the interlayer of cetyltrimethylammonium bromide PMMT, and their catalytic performance was evaluated by the reduction reaction of 4-nitrophenol (4-NP) using NaBH4 as a reductant. Microstructure and morphology characterization indicated that MoS2/PMMT exhibited hybrid-stacked layered structures with an interlayer spacing of 1.29 nm, and the MoS2 nanosheets were intercalated within the montmorillonite (MMT) layers, with most of the edges exposed to the outside. The catalytic activity and stability of MoS2/PMMT were both enhanced by the MMT. With the MoS2/PMMT as the catalyst, the apparent reaction rate constant of the 4-NP reduction was 0.723 min-1 and was maintained at -0.679 min-1 after five reaction cycles. The structural evolution of MoSdPMMT and the possible catalysis mechanism for the reduction reaction of 4-NP were investigated. The as-prepared MOSR/PMMT hybrid nanosheets are promising candidates for catalytic application in the water-treatment and biomedical fields. The strategy developed in this study can provide insights for designing hybrid nanosheets with diverse heterogeneous two-dimensional (2D) nanomaterials.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-016-1315-3