Probing hydroxyl radical generation from H2O2 upon plasmon excitation of gold nanorods using electron spin resonance: Molecular oxygen-mediated activation

Gold nanostructures are among the noble metal nanomaterials being intensely studied due to their good biocompatibility, tunable localized surface plasmon resonance (SPR), and ease of modification. These properties give gold nano- structures many potential chemical and biomedical applications. Herein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2016-06, Vol.9 (6), p.1663-1673
Hauptverfasser: Wen, Tao, Zhang, Hui, Chong, Yu, Wamer, Wayne G., Yin, Jun-Jie, Wu, Xiaochun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1673
container_issue 6
container_start_page 1663
container_title Nano research
container_volume 9
creator Wen, Tao
Zhang, Hui
Chong, Yu
Wamer, Wayne G.
Yin, Jun-Jie
Wu, Xiaochun
description Gold nanostructures are among the noble metal nanomaterials being intensely studied due to their good biocompatibility, tunable localized surface plasmon resonance (SPR), and ease of modification. These properties give gold nano- structures many potential chemical and biomedical applications. Herein, we demonstrate the critical role of oxygen activation during the decomposition of hydrogen peroxide (H202) in the presence of photoexcited gold nanorods (AuNRs) by using electron spin resonance (ESR) techniques. Upon SPR excitation, 02 is activated first, and the resulting reactive intermediates further activate H202 to produce ,OH. The reactive intermediates exhibit singlet oxygen-like (102-1ike) reactivity, indicated by 102-specific oxidation reaction, quenching behaviors, and the lack of the typical 102 ESR signal. In addition, by using the antioxidant sodium ascorbate (NaA) as an example, we show that hydroxyl radicals from H202 activation can induce much stronger NaA oxidation than that in the absence of H202. These results may have significant biomedical implications. For example, as oxidative stress levels are known to influence tumorigenesis and cancer progression, the ability to control redox status inside tumor microenvironments using noble metal nanostructures may provide new strategies for regulating the metabolism of reactive oxygen species and new approaches for cancer treatment.
doi_str_mv 10.1007/s12274-016-1060-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001476246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>668969458</cqvip_id><sourcerecordid>2001476246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-290ccb59250f93319a46fef04d4461332e88c2281ccc30b09c7e963b70a898463</originalsourceid><addsrcrecordid>eNp9kU1OwzAQhSMEElA4ADsL1oHxTx17iRBQJBAsYG25jhOCUjvYCaJXQRyFO3EF3IafHd6MR_Pe-xYvyw4wHGOA4iRiQgqWA-Y5Bg55sZHtYClFDult_vwxYdvZboxPAJxgJnay97vg542r0eOyDP512aKgy8boFtXW2aD7xjtUBb9AM3JL0NCltWt1XKRpX03Tjwpfodq3JXLa-eDLiIa4CrWtNX1I99g1DgUbfRIY-_nxhm58ug2tDihREytf2LLRvS2RNn3zso7dy7Yq3Ua7_z0n2cPF-f3ZLL--vbw6O73ODWW0z4kEY-ZTSaZQSUqx1IxXtgJWMsYxpcQKYQgR2BhDYQ7SFFZyOi9ACykYp5PsaMztgn8ebOzVkx-CS0hFADArOFmr8KgywccYbKW60Cx0WCoMalWCGktQqQS1KkEVyUNGT0xaV9vwl_yf6fAb9Ohd_Zx8vyTOheSSTQX9Ahc9mSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001476246</pqid></control><display><type>article</type><title>Probing hydroxyl radical generation from H2O2 upon plasmon excitation of gold nanorods using electron spin resonance: Molecular oxygen-mediated activation</title><source>SpringerLink Journals</source><creator>Wen, Tao ; Zhang, Hui ; Chong, Yu ; Wamer, Wayne G. ; Yin, Jun-Jie ; Wu, Xiaochun</creator><creatorcontrib>Wen, Tao ; Zhang, Hui ; Chong, Yu ; Wamer, Wayne G. ; Yin, Jun-Jie ; Wu, Xiaochun</creatorcontrib><description>Gold nanostructures are among the noble metal nanomaterials being intensely studied due to their good biocompatibility, tunable localized surface plasmon resonance (SPR), and ease of modification. These properties give gold nano- structures many potential chemical and biomedical applications. Herein, we demonstrate the critical role of oxygen activation during the decomposition of hydrogen peroxide (H202) in the presence of photoexcited gold nanorods (AuNRs) by using electron spin resonance (ESR) techniques. Upon SPR excitation, 02 is activated first, and the resulting reactive intermediates further activate H202 to produce ,OH. The reactive intermediates exhibit singlet oxygen-like (102-1ike) reactivity, indicated by 102-specific oxidation reaction, quenching behaviors, and the lack of the typical 102 ESR signal. In addition, by using the antioxidant sodium ascorbate (NaA) as an example, we show that hydroxyl radicals from H202 activation can induce much stronger NaA oxidation than that in the absence of H202. These results may have significant biomedical implications. For example, as oxidative stress levels are known to influence tumorigenesis and cancer progression, the ability to control redox status inside tumor microenvironments using noble metal nanostructures may provide new strategies for regulating the metabolism of reactive oxygen species and new approaches for cancer treatment.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-016-1060-7</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Activation ; Antioxidants ; Ascorbic acid ; Atomic/Molecular Structure and Spectra ; Biocompatibility ; Biomedical materials ; Biomedicine ; Biotechnology ; Cancer ; Chemistry and Materials Science ; Condensed Matter Physics ; Electron paramagnetic resonance ; Electron spin ; Electron spin resonance ; Excitation ; Free radicals ; Gold ; Hydrogen peroxide ; Hydroxyl radicals ; Intermediates ; Materials Science ; Metabolism ; Microenvironments ; Nanomaterials ; Nanorods ; Nanostructure ; Nanotechnology ; Noble metals ; Oxidation ; Oxidative stress ; Oxygen ; Reactive oxygen species ; Research Article ; Resonance ; Singlet oxygen ; Sodium ; Spin resonance ; Stability ; Surface plasmon resonance ; Tumorigenesis ; 元激发 ; 分子氧 ; 氧活化 ; 测金 ; 电子自旋共振 ; 纳米棒 ; 羟基自由基 ; 表面等离子体共振</subject><ispartof>Nano research, 2016-06, Vol.9 (6), p.1663-1673</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Nano Research is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-290ccb59250f93319a46fef04d4461332e88c2281ccc30b09c7e963b70a898463</citedby><cites>FETCH-LOGICAL-c343t-290ccb59250f93319a46fef04d4461332e88c2281ccc30b09c7e963b70a898463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-016-1060-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-016-1060-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wen, Tao</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Chong, Yu</creatorcontrib><creatorcontrib>Wamer, Wayne G.</creatorcontrib><creatorcontrib>Yin, Jun-Jie</creatorcontrib><creatorcontrib>Wu, Xiaochun</creatorcontrib><title>Probing hydroxyl radical generation from H2O2 upon plasmon excitation of gold nanorods using electron spin resonance: Molecular oxygen-mediated activation</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>Gold nanostructures are among the noble metal nanomaterials being intensely studied due to their good biocompatibility, tunable localized surface plasmon resonance (SPR), and ease of modification. These properties give gold nano- structures many potential chemical and biomedical applications. Herein, we demonstrate the critical role of oxygen activation during the decomposition of hydrogen peroxide (H202) in the presence of photoexcited gold nanorods (AuNRs) by using electron spin resonance (ESR) techniques. Upon SPR excitation, 02 is activated first, and the resulting reactive intermediates further activate H202 to produce ,OH. The reactive intermediates exhibit singlet oxygen-like (102-1ike) reactivity, indicated by 102-specific oxidation reaction, quenching behaviors, and the lack of the typical 102 ESR signal. In addition, by using the antioxidant sodium ascorbate (NaA) as an example, we show that hydroxyl radicals from H202 activation can induce much stronger NaA oxidation than that in the absence of H202. These results may have significant biomedical implications. For example, as oxidative stress levels are known to influence tumorigenesis and cancer progression, the ability to control redox status inside tumor microenvironments using noble metal nanostructures may provide new strategies for regulating the metabolism of reactive oxygen species and new approaches for cancer treatment.</description><subject>Activation</subject><subject>Antioxidants</subject><subject>Ascorbic acid</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Electron spin resonance</subject><subject>Excitation</subject><subject>Free radicals</subject><subject>Gold</subject><subject>Hydrogen peroxide</subject><subject>Hydroxyl radicals</subject><subject>Intermediates</subject><subject>Materials Science</subject><subject>Metabolism</subject><subject>Microenvironments</subject><subject>Nanomaterials</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Oxygen</subject><subject>Reactive oxygen species</subject><subject>Research Article</subject><subject>Resonance</subject><subject>Singlet oxygen</subject><subject>Sodium</subject><subject>Spin resonance</subject><subject>Stability</subject><subject>Surface plasmon resonance</subject><subject>Tumorigenesis</subject><subject>元激发</subject><subject>分子氧</subject><subject>氧活化</subject><subject>测金</subject><subject>电子自旋共振</subject><subject>纳米棒</subject><subject>羟基自由基</subject><subject>表面等离子体共振</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1OwzAQhSMEElA4ADsL1oHxTx17iRBQJBAsYG25jhOCUjvYCaJXQRyFO3EF3IafHd6MR_Pe-xYvyw4wHGOA4iRiQgqWA-Y5Bg55sZHtYClFDult_vwxYdvZboxPAJxgJnay97vg542r0eOyDP512aKgy8boFtXW2aD7xjtUBb9AM3JL0NCltWt1XKRpX03Tjwpfodq3JXLa-eDLiIa4CrWtNX1I99g1DgUbfRIY-_nxhm58ug2tDihREytf2LLRvS2RNn3zso7dy7Yq3Ua7_z0n2cPF-f3ZLL--vbw6O73ODWW0z4kEY-ZTSaZQSUqx1IxXtgJWMsYxpcQKYQgR2BhDYQ7SFFZyOi9ACykYp5PsaMztgn8ebOzVkx-CS0hFADArOFmr8KgywccYbKW60Cx0WCoMalWCGktQqQS1KkEVyUNGT0xaV9vwl_yf6fAb9Ohd_Zx8vyTOheSSTQX9Ahc9mSk</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Wen, Tao</creator><creator>Zhang, Hui</creator><creator>Chong, Yu</creator><creator>Wamer, Wayne G.</creator><creator>Yin, Jun-Jie</creator><creator>Wu, Xiaochun</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20160601</creationdate><title>Probing hydroxyl radical generation from H2O2 upon plasmon excitation of gold nanorods using electron spin resonance: Molecular oxygen-mediated activation</title><author>Wen, Tao ; Zhang, Hui ; Chong, Yu ; Wamer, Wayne G. ; Yin, Jun-Jie ; Wu, Xiaochun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-290ccb59250f93319a46fef04d4461332e88c2281ccc30b09c7e963b70a898463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Activation</topic><topic>Antioxidants</topic><topic>Ascorbic acid</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Electron spin resonance</topic><topic>Excitation</topic><topic>Free radicals</topic><topic>Gold</topic><topic>Hydrogen peroxide</topic><topic>Hydroxyl radicals</topic><topic>Intermediates</topic><topic>Materials Science</topic><topic>Metabolism</topic><topic>Microenvironments</topic><topic>Nanomaterials</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Oxygen</topic><topic>Reactive oxygen species</topic><topic>Research Article</topic><topic>Resonance</topic><topic>Singlet oxygen</topic><topic>Sodium</topic><topic>Spin resonance</topic><topic>Stability</topic><topic>Surface plasmon resonance</topic><topic>Tumorigenesis</topic><topic>元激发</topic><topic>分子氧</topic><topic>氧活化</topic><topic>测金</topic><topic>电子自旋共振</topic><topic>纳米棒</topic><topic>羟基自由基</topic><topic>表面等离子体共振</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Tao</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Chong, Yu</creatorcontrib><creatorcontrib>Wamer, Wayne G.</creatorcontrib><creatorcontrib>Yin, Jun-Jie</creatorcontrib><creatorcontrib>Wu, Xiaochun</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Tao</au><au>Zhang, Hui</au><au>Chong, Yu</au><au>Wamer, Wayne G.</au><au>Yin, Jun-Jie</au><au>Wu, Xiaochun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing hydroxyl radical generation from H2O2 upon plasmon excitation of gold nanorods using electron spin resonance: Molecular oxygen-mediated activation</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>9</volume><issue>6</issue><spage>1663</spage><epage>1673</epage><pages>1663-1673</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Gold nanostructures are among the noble metal nanomaterials being intensely studied due to their good biocompatibility, tunable localized surface plasmon resonance (SPR), and ease of modification. These properties give gold nano- structures many potential chemical and biomedical applications. Herein, we demonstrate the critical role of oxygen activation during the decomposition of hydrogen peroxide (H202) in the presence of photoexcited gold nanorods (AuNRs) by using electron spin resonance (ESR) techniques. Upon SPR excitation, 02 is activated first, and the resulting reactive intermediates further activate H202 to produce ,OH. The reactive intermediates exhibit singlet oxygen-like (102-1ike) reactivity, indicated by 102-specific oxidation reaction, quenching behaviors, and the lack of the typical 102 ESR signal. In addition, by using the antioxidant sodium ascorbate (NaA) as an example, we show that hydroxyl radicals from H202 activation can induce much stronger NaA oxidation than that in the absence of H202. These results may have significant biomedical implications. For example, as oxidative stress levels are known to influence tumorigenesis and cancer progression, the ability to control redox status inside tumor microenvironments using noble metal nanostructures may provide new strategies for regulating the metabolism of reactive oxygen species and new approaches for cancer treatment.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-016-1060-7</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2016-06, Vol.9 (6), p.1663-1673
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2001476246
source SpringerLink Journals
subjects Activation
Antioxidants
Ascorbic acid
Atomic/Molecular Structure and Spectra
Biocompatibility
Biomedical materials
Biomedicine
Biotechnology
Cancer
Chemistry and Materials Science
Condensed Matter Physics
Electron paramagnetic resonance
Electron spin
Electron spin resonance
Excitation
Free radicals
Gold
Hydrogen peroxide
Hydroxyl radicals
Intermediates
Materials Science
Metabolism
Microenvironments
Nanomaterials
Nanorods
Nanostructure
Nanotechnology
Noble metals
Oxidation
Oxidative stress
Oxygen
Reactive oxygen species
Research Article
Resonance
Singlet oxygen
Sodium
Spin resonance
Stability
Surface plasmon resonance
Tumorigenesis
元激发
分子氧
氧活化
测金
电子自旋共振
纳米棒
羟基自由基
表面等离子体共振
title Probing hydroxyl radical generation from H2O2 upon plasmon excitation of gold nanorods using electron spin resonance: Molecular oxygen-mediated activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A47%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20hydroxyl%20radical%20generation%20from%20H2O2%20upon%20plasmon%20excitation%20of%20gold%20nanorods%20using%20electron%20spin%20resonance%EF%BC%9A%20Molecular%20oxygen-mediated%20activation&rft.jtitle=Nano%20research&rft.au=Wen,%20Tao&rft.date=2016-06-01&rft.volume=9&rft.issue=6&rft.spage=1663&rft.epage=1673&rft.pages=1663-1673&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-016-1060-7&rft_dat=%3Cproquest_cross%3E2001476246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001476246&rft_id=info:pmid/&rft_cqvip_id=668969458&rfr_iscdi=true