High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks

Although In2O3 nanofibers (NFs) are well-known candidates as active materials for next-generation, low-cost electronics, these NF based devices still suffer from high leakage current, insufficient on-off current ratios (Ion/Ioff), and large, negative threshold voltages (VTH), leading to poor device...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2018-03, Vol.11 (3), p.1227-1237
Hauptverfasser: Zhang, Hongchao, Meng, You, Song, Longfei, Luo, Linqu, Qin, Yuanbin, Han, Ning, Yang, Zaixing, Liu, Lei, Ho, Johnny C., Wang, Fengyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1237
container_issue 3
container_start_page 1227
container_title Nano research
container_volume 11
creator Zhang, Hongchao
Meng, You
Song, Longfei
Luo, Linqu
Qin, Yuanbin
Han, Ning
Yang, Zaixing
Liu, Lei
Ho, Johnny C.
Wang, Fengyun
description Although In2O3 nanofibers (NFs) are well-known candidates as active materials for next-generation, low-cost electronics, these NF based devices still suffer from high leakage current, insufficient on-off current ratios (Ion/Ioff), and large, negative threshold voltages (VTH), leading to poor device performance, parasitic energy consumption, and rather complicated circuit design. Here, instead of the conventional surface modification of In2O3 NFs, we present a one-step electrospinning process (i.e., without hot-press) to obtain controllable Mg-doped In2O3 NF networks to achieve high-performance enhancement-mode thin-film transistors (TFTs). By simply adjusting the Mg doping concentration, the device performance can be manipulated precisely. For the optimal doping concentration of 2 mol%, the devices exhibit a small VTH (3.2 V), high saturation current (1.1 × 10^-4 A), large on/off current ratio (〉 10^8), and respectable peak carrier mobility (2.04 cm2/(V.s)), corresponding to one of the best device performances among all 1D metal-oxide NFs based devices reported so far. When high-K HfOx thin films are employed as the gate dielectric, their electron mobility and VTH can be further improved to 5.30 cm^2/(V.s) and 0.9 V, respectivel), which demonstrates the promising prospect of these Mg-doped In2O3 NF networks for high- performance, large-scale, and low-power electronics.
doi_str_mv 10.1007/s12274-017-1735-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001476225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674750720</cqvip_id><sourcerecordid>2001476225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-99f985eb45475576e590406fe1ba78a692af78200211f6972a90a599d050cac83</originalsourceid><addsrcrecordid>eNp9ULtOwzAUjRBIlMIHsFkwG66dOI5HVAGtVNQFZstJ7CSlsVs7FeLvcRQeG3c5ZzgP3ZMk1wTuCAC_D4RSnmEgHBOeMlycJDMiRIEh3ukPJzQ7Ty5C2ALklGTFLCmXXdPivfbG-V7ZSiNt2xF7bQfcu1qjoe0sNt2uR4NXNnRhcD6gUgVdI2fRS4Nrt498ZekmRVZZZ7pSe2T18OH8e7hMzozaBX31jfPk7enxdbHE683zavGwxlUGYsBCGFEwXWYs44zxXDMBGeRGk1LxQuWCKsMLCkAJMbngVAlQTIgaGFSqKtJ5cjvl7r07HHUY5NYdvY2VMrpIxnNKWVSRSVV5F4LXRu591yv_KQnIcUo5TSnjlHKcUo7JdPKEqLWN9n_J_5luvotaZ5tD9P025Ty-CJxC-gWWHYEj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001476225</pqid></control><display><type>article</type><title>High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks</title><source>SpringerLink Journals</source><creator>Zhang, Hongchao ; Meng, You ; Song, Longfei ; Luo, Linqu ; Qin, Yuanbin ; Han, Ning ; Yang, Zaixing ; Liu, Lei ; Ho, Johnny C. ; Wang, Fengyun</creator><creatorcontrib>Zhang, Hongchao ; Meng, You ; Song, Longfei ; Luo, Linqu ; Qin, Yuanbin ; Han, Ning ; Yang, Zaixing ; Liu, Lei ; Ho, Johnny C. ; Wang, Fengyun</creatorcontrib><description>Although In2O3 nanofibers (NFs) are well-known candidates as active materials for next-generation, low-cost electronics, these NF based devices still suffer from high leakage current, insufficient on-off current ratios (Ion/Ioff), and large, negative threshold voltages (VTH), leading to poor device performance, parasitic energy consumption, and rather complicated circuit design. Here, instead of the conventional surface modification of In2O3 NFs, we present a one-step electrospinning process (i.e., without hot-press) to obtain controllable Mg-doped In2O3 NF networks to achieve high-performance enhancement-mode thin-film transistors (TFTs). By simply adjusting the Mg doping concentration, the device performance can be manipulated precisely. For the optimal doping concentration of 2 mol%, the devices exhibit a small VTH (3.2 V), high saturation current (1.1 × 10^-4 A), large on/off current ratio (〉 10^8), and respectable peak carrier mobility (2.04 cm2/(V.s)), corresponding to one of the best device performances among all 1D metal-oxide NFs based devices reported so far. When high-K HfOx thin films are employed as the gate dielectric, their electron mobility and VTH can be further improved to 5.30 cm^2/(V.s) and 0.9 V, respectivel), which demonstrates the promising prospect of these Mg-doped In2O3 NF networks for high- performance, large-scale, and low-power electronics.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1735-8</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Carrier mobility ; Chemistry and Materials Science ; Circuit design ; Condensed Matter Physics ; Design modifications ; Doping ; Electron mobility ; Electronics ; Energy consumption ; In2O3;晶体管;电影;联网;金属氧化物;电子学;漏电流;开关电流 ; Indium oxides ; Leakage current ; Materials Science ; Metal oxides ; Mobility ; Nanofibers ; Nanotechnology ; Networks ; Parasitics (electronics) ; Performance enhancement ; Research Article ; Semiconductor devices ; Thin film transistors ; Thin films ; Transistors</subject><ispartof>Nano research, 2018-03, Vol.11 (3), p.1227-1237</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany 2018</rights><rights>Nano Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-99f985eb45475576e590406fe1ba78a692af78200211f6972a90a599d050cac83</citedby><cites>FETCH-LOGICAL-c409t-99f985eb45475576e590406fe1ba78a692af78200211f6972a90a599d050cac83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-017-1735-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-017-1735-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Hongchao</creatorcontrib><creatorcontrib>Meng, You</creatorcontrib><creatorcontrib>Song, Longfei</creatorcontrib><creatorcontrib>Luo, Linqu</creatorcontrib><creatorcontrib>Qin, Yuanbin</creatorcontrib><creatorcontrib>Han, Ning</creatorcontrib><creatorcontrib>Yang, Zaixing</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Ho, Johnny C.</creatorcontrib><creatorcontrib>Wang, Fengyun</creatorcontrib><title>High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>Although In2O3 nanofibers (NFs) are well-known candidates as active materials for next-generation, low-cost electronics, these NF based devices still suffer from high leakage current, insufficient on-off current ratios (Ion/Ioff), and large, negative threshold voltages (VTH), leading to poor device performance, parasitic energy consumption, and rather complicated circuit design. Here, instead of the conventional surface modification of In2O3 NFs, we present a one-step electrospinning process (i.e., without hot-press) to obtain controllable Mg-doped In2O3 NF networks to achieve high-performance enhancement-mode thin-film transistors (TFTs). By simply adjusting the Mg doping concentration, the device performance can be manipulated precisely. For the optimal doping concentration of 2 mol%, the devices exhibit a small VTH (3.2 V), high saturation current (1.1 × 10^-4 A), large on/off current ratio (〉 10^8), and respectable peak carrier mobility (2.04 cm2/(V.s)), corresponding to one of the best device performances among all 1D metal-oxide NFs based devices reported so far. When high-K HfOx thin films are employed as the gate dielectric, their electron mobility and VTH can be further improved to 5.30 cm^2/(V.s) and 0.9 V, respectivel), which demonstrates the promising prospect of these Mg-doped In2O3 NF networks for high- performance, large-scale, and low-power electronics.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carrier mobility</subject><subject>Chemistry and Materials Science</subject><subject>Circuit design</subject><subject>Condensed Matter Physics</subject><subject>Design modifications</subject><subject>Doping</subject><subject>Electron mobility</subject><subject>Electronics</subject><subject>Energy consumption</subject><subject>In2O3;晶体管;电影;联网;金属氧化物;电子学;漏电流;开关电流</subject><subject>Indium oxides</subject><subject>Leakage current</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Mobility</subject><subject>Nanofibers</subject><subject>Nanotechnology</subject><subject>Networks</subject><subject>Parasitics (electronics)</subject><subject>Performance enhancement</subject><subject>Research Article</subject><subject>Semiconductor devices</subject><subject>Thin film transistors</subject><subject>Thin films</subject><subject>Transistors</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9ULtOwzAUjRBIlMIHsFkwG66dOI5HVAGtVNQFZstJ7CSlsVs7FeLvcRQeG3c5ZzgP3ZMk1wTuCAC_D4RSnmEgHBOeMlycJDMiRIEh3ukPJzQ7Ty5C2ALklGTFLCmXXdPivfbG-V7ZSiNt2xF7bQfcu1qjoe0sNt2uR4NXNnRhcD6gUgVdI2fRS4Nrt498ZekmRVZZZ7pSe2T18OH8e7hMzozaBX31jfPk7enxdbHE683zavGwxlUGYsBCGFEwXWYs44zxXDMBGeRGk1LxQuWCKsMLCkAJMbngVAlQTIgaGFSqKtJ5cjvl7r07HHUY5NYdvY2VMrpIxnNKWVSRSVV5F4LXRu591yv_KQnIcUo5TSnjlHKcUo7JdPKEqLWN9n_J_5luvotaZ5tD9P025Ty-CJxC-gWWHYEj</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Zhang, Hongchao</creator><creator>Meng, You</creator><creator>Song, Longfei</creator><creator>Luo, Linqu</creator><creator>Qin, Yuanbin</creator><creator>Han, Ning</creator><creator>Yang, Zaixing</creator><creator>Liu, Lei</creator><creator>Ho, Johnny C.</creator><creator>Wang, Fengyun</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180301</creationdate><title>High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks</title><author>Zhang, Hongchao ; Meng, You ; Song, Longfei ; Luo, Linqu ; Qin, Yuanbin ; Han, Ning ; Yang, Zaixing ; Liu, Lei ; Ho, Johnny C. ; Wang, Fengyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-99f985eb45475576e590406fe1ba78a692af78200211f6972a90a599d050cac83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carrier mobility</topic><topic>Chemistry and Materials Science</topic><topic>Circuit design</topic><topic>Condensed Matter Physics</topic><topic>Design modifications</topic><topic>Doping</topic><topic>Electron mobility</topic><topic>Electronics</topic><topic>Energy consumption</topic><topic>In2O3;晶体管;电影;联网;金属氧化物;电子学;漏电流;开关电流</topic><topic>Indium oxides</topic><topic>Leakage current</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Mobility</topic><topic>Nanofibers</topic><topic>Nanotechnology</topic><topic>Networks</topic><topic>Parasitics (electronics)</topic><topic>Performance enhancement</topic><topic>Research Article</topic><topic>Semiconductor devices</topic><topic>Thin film transistors</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongchao</creatorcontrib><creatorcontrib>Meng, You</creatorcontrib><creatorcontrib>Song, Longfei</creatorcontrib><creatorcontrib>Luo, Linqu</creatorcontrib><creatorcontrib>Qin, Yuanbin</creatorcontrib><creatorcontrib>Han, Ning</creatorcontrib><creatorcontrib>Yang, Zaixing</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Ho, Johnny C.</creatorcontrib><creatorcontrib>Wang, Fengyun</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hongchao</au><au>Meng, You</au><au>Song, Longfei</au><au>Luo, Linqu</au><au>Qin, Yuanbin</au><au>Han, Ning</au><au>Yang, Zaixing</au><au>Liu, Lei</au><au>Ho, Johnny C.</au><au>Wang, Fengyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>11</volume><issue>3</issue><spage>1227</spage><epage>1237</epage><pages>1227-1237</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Although In2O3 nanofibers (NFs) are well-known candidates as active materials for next-generation, low-cost electronics, these NF based devices still suffer from high leakage current, insufficient on-off current ratios (Ion/Ioff), and large, negative threshold voltages (VTH), leading to poor device performance, parasitic energy consumption, and rather complicated circuit design. Here, instead of the conventional surface modification of In2O3 NFs, we present a one-step electrospinning process (i.e., without hot-press) to obtain controllable Mg-doped In2O3 NF networks to achieve high-performance enhancement-mode thin-film transistors (TFTs). By simply adjusting the Mg doping concentration, the device performance can be manipulated precisely. For the optimal doping concentration of 2 mol%, the devices exhibit a small VTH (3.2 V), high saturation current (1.1 × 10^-4 A), large on/off current ratio (〉 10^8), and respectable peak carrier mobility (2.04 cm2/(V.s)), corresponding to one of the best device performances among all 1D metal-oxide NFs based devices reported so far. When high-K HfOx thin films are employed as the gate dielectric, their electron mobility and VTH can be further improved to 5.30 cm^2/(V.s) and 0.9 V, respectivel), which demonstrates the promising prospect of these Mg-doped In2O3 NF networks for high- performance, large-scale, and low-power electronics.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1735-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2018-03, Vol.11 (3), p.1227-1237
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2001476225
source SpringerLink Journals
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Carrier mobility
Chemistry and Materials Science
Circuit design
Condensed Matter Physics
Design modifications
Doping
Electron mobility
Electronics
Energy consumption
In2O3
晶体管
电影
联网
金属氧化物
电子学
漏电流
开关电流
Indium oxides
Leakage current
Materials Science
Metal oxides
Mobility
Nanofibers
Nanotechnology
Networks
Parasitics (electronics)
Performance enhancement
Research Article
Semiconductor devices
Thin film transistors
Thin films
Transistors
title High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20enhancement-mode%20thin-film%20transistors%20based%20on%20Mg-doped%20In2O3%20nanofiber%20networks&rft.jtitle=Nano%20research&rft.au=Zhang,%20Hongchao&rft.date=2018-03-01&rft.volume=11&rft.issue=3&rft.spage=1227&rft.epage=1237&rft.pages=1227-1237&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1735-8&rft_dat=%3Cproquest_cross%3E2001476225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001476225&rft_id=info:pmid/&rft_cqvip_id=674750720&rfr_iscdi=true