High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks
Although In2O3 nanofibers (NFs) are well-known candidates as active materials for next-generation, low-cost electronics, these NF based devices still suffer from high leakage current, insufficient on-off current ratios (Ion/Ioff), and large, negative threshold voltages (VTH), leading to poor device...
Gespeichert in:
Veröffentlicht in: | Nano research 2018-03, Vol.11 (3), p.1227-1237 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1237 |
---|---|
container_issue | 3 |
container_start_page | 1227 |
container_title | Nano research |
container_volume | 11 |
creator | Zhang, Hongchao Meng, You Song, Longfei Luo, Linqu Qin, Yuanbin Han, Ning Yang, Zaixing Liu, Lei Ho, Johnny C. Wang, Fengyun |
description | Although In2O3 nanofibers (NFs) are well-known candidates as active materials for next-generation, low-cost electronics, these NF based devices still suffer from high leakage current, insufficient on-off current ratios (Ion/Ioff), and large, negative threshold voltages (VTH), leading to poor device performance, parasitic energy consumption, and rather complicated circuit design. Here, instead of the conventional surface modification of In2O3 NFs, we present a one-step electrospinning process (i.e., without hot-press) to obtain controllable Mg-doped In2O3 NF networks to achieve high-performance enhancement-mode thin-film transistors (TFTs). By simply adjusting the Mg doping concentration, the device performance can be manipulated precisely. For the optimal doping concentration of 2 mol%, the devices exhibit a small VTH (3.2 V), high saturation current (1.1 × 10^-4 A), large on/off current ratio (〉 10^8), and respectable peak carrier mobility (2.04 cm2/(V.s)), corresponding to one of the best device performances among all 1D metal-oxide NFs based devices reported so far. When high-K HfOx thin films are employed as the gate dielectric, their electron mobility and VTH can be further improved to 5.30 cm^2/(V.s) and 0.9 V, respectivel), which demonstrates the promising prospect of these Mg-doped In2O3 NF networks for high- performance, large-scale, and low-power electronics. |
doi_str_mv | 10.1007/s12274-017-1735-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001476225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674750720</cqvip_id><sourcerecordid>2001476225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-99f985eb45475576e590406fe1ba78a692af78200211f6972a90a599d050cac83</originalsourceid><addsrcrecordid>eNp9ULtOwzAUjRBIlMIHsFkwG66dOI5HVAGtVNQFZstJ7CSlsVs7FeLvcRQeG3c5ZzgP3ZMk1wTuCAC_D4RSnmEgHBOeMlycJDMiRIEh3ukPJzQ7Ty5C2ALklGTFLCmXXdPivfbG-V7ZSiNt2xF7bQfcu1qjoe0sNt2uR4NXNnRhcD6gUgVdI2fRS4Nrt498ZekmRVZZZ7pSe2T18OH8e7hMzozaBX31jfPk7enxdbHE683zavGwxlUGYsBCGFEwXWYs44zxXDMBGeRGk1LxQuWCKsMLCkAJMbngVAlQTIgaGFSqKtJ5cjvl7r07HHUY5NYdvY2VMrpIxnNKWVSRSVV5F4LXRu591yv_KQnIcUo5TSnjlHKcUo7JdPKEqLWN9n_J_5luvotaZ5tD9P025Ty-CJxC-gWWHYEj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001476225</pqid></control><display><type>article</type><title>High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks</title><source>SpringerLink Journals</source><creator>Zhang, Hongchao ; Meng, You ; Song, Longfei ; Luo, Linqu ; Qin, Yuanbin ; Han, Ning ; Yang, Zaixing ; Liu, Lei ; Ho, Johnny C. ; Wang, Fengyun</creator><creatorcontrib>Zhang, Hongchao ; Meng, You ; Song, Longfei ; Luo, Linqu ; Qin, Yuanbin ; Han, Ning ; Yang, Zaixing ; Liu, Lei ; Ho, Johnny C. ; Wang, Fengyun</creatorcontrib><description>Although In2O3 nanofibers (NFs) are well-known candidates as active materials for next-generation, low-cost electronics, these NF based devices still suffer from high leakage current, insufficient on-off current ratios (Ion/Ioff), and large, negative threshold voltages (VTH), leading to poor device performance, parasitic energy consumption, and rather complicated circuit design. Here, instead of the conventional surface modification of In2O3 NFs, we present a one-step electrospinning process (i.e., without hot-press) to obtain controllable Mg-doped In2O3 NF networks to achieve high-performance enhancement-mode thin-film transistors (TFTs). By simply adjusting the Mg doping concentration, the device performance can be manipulated precisely. For the optimal doping concentration of 2 mol%, the devices exhibit a small VTH (3.2 V), high saturation current (1.1 × 10^-4 A), large on/off current ratio (〉 10^8), and respectable peak carrier mobility (2.04 cm2/(V.s)), corresponding to one of the best device performances among all 1D metal-oxide NFs based devices reported so far. When high-K HfOx thin films are employed as the gate dielectric, their electron mobility and VTH can be further improved to 5.30 cm^2/(V.s) and 0.9 V, respectivel), which demonstrates the promising prospect of these Mg-doped In2O3 NF networks for high- performance, large-scale, and low-power electronics.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1735-8</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Carrier mobility ; Chemistry and Materials Science ; Circuit design ; Condensed Matter Physics ; Design modifications ; Doping ; Electron mobility ; Electronics ; Energy consumption ; In2O3;晶体管;电影;联网;金属氧化物;电子学;漏电流;开关电流 ; Indium oxides ; Leakage current ; Materials Science ; Metal oxides ; Mobility ; Nanofibers ; Nanotechnology ; Networks ; Parasitics (electronics) ; Performance enhancement ; Research Article ; Semiconductor devices ; Thin film transistors ; Thin films ; Transistors</subject><ispartof>Nano research, 2018-03, Vol.11 (3), p.1227-1237</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany 2018</rights><rights>Nano Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-99f985eb45475576e590406fe1ba78a692af78200211f6972a90a599d050cac83</citedby><cites>FETCH-LOGICAL-c409t-99f985eb45475576e590406fe1ba78a692af78200211f6972a90a599d050cac83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-017-1735-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-017-1735-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Hongchao</creatorcontrib><creatorcontrib>Meng, You</creatorcontrib><creatorcontrib>Song, Longfei</creatorcontrib><creatorcontrib>Luo, Linqu</creatorcontrib><creatorcontrib>Qin, Yuanbin</creatorcontrib><creatorcontrib>Han, Ning</creatorcontrib><creatorcontrib>Yang, Zaixing</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Ho, Johnny C.</creatorcontrib><creatorcontrib>Wang, Fengyun</creatorcontrib><title>High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>Although In2O3 nanofibers (NFs) are well-known candidates as active materials for next-generation, low-cost electronics, these NF based devices still suffer from high leakage current, insufficient on-off current ratios (Ion/Ioff), and large, negative threshold voltages (VTH), leading to poor device performance, parasitic energy consumption, and rather complicated circuit design. Here, instead of the conventional surface modification of In2O3 NFs, we present a one-step electrospinning process (i.e., without hot-press) to obtain controllable Mg-doped In2O3 NF networks to achieve high-performance enhancement-mode thin-film transistors (TFTs). By simply adjusting the Mg doping concentration, the device performance can be manipulated precisely. For the optimal doping concentration of 2 mol%, the devices exhibit a small VTH (3.2 V), high saturation current (1.1 × 10^-4 A), large on/off current ratio (〉 10^8), and respectable peak carrier mobility (2.04 cm2/(V.s)), corresponding to one of the best device performances among all 1D metal-oxide NFs based devices reported so far. When high-K HfOx thin films are employed as the gate dielectric, their electron mobility and VTH can be further improved to 5.30 cm^2/(V.s) and 0.9 V, respectivel), which demonstrates the promising prospect of these Mg-doped In2O3 NF networks for high- performance, large-scale, and low-power electronics.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carrier mobility</subject><subject>Chemistry and Materials Science</subject><subject>Circuit design</subject><subject>Condensed Matter Physics</subject><subject>Design modifications</subject><subject>Doping</subject><subject>Electron mobility</subject><subject>Electronics</subject><subject>Energy consumption</subject><subject>In2O3;晶体管;电影;联网;金属氧化物;电子学;漏电流;开关电流</subject><subject>Indium oxides</subject><subject>Leakage current</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Mobility</subject><subject>Nanofibers</subject><subject>Nanotechnology</subject><subject>Networks</subject><subject>Parasitics (electronics)</subject><subject>Performance enhancement</subject><subject>Research Article</subject><subject>Semiconductor devices</subject><subject>Thin film transistors</subject><subject>Thin films</subject><subject>Transistors</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9ULtOwzAUjRBIlMIHsFkwG66dOI5HVAGtVNQFZstJ7CSlsVs7FeLvcRQeG3c5ZzgP3ZMk1wTuCAC_D4RSnmEgHBOeMlycJDMiRIEh3ukPJzQ7Ty5C2ALklGTFLCmXXdPivfbG-V7ZSiNt2xF7bQfcu1qjoe0sNt2uR4NXNnRhcD6gUgVdI2fRS4Nrt498ZekmRVZZZ7pSe2T18OH8e7hMzozaBX31jfPk7enxdbHE683zavGwxlUGYsBCGFEwXWYs44zxXDMBGeRGk1LxQuWCKsMLCkAJMbngVAlQTIgaGFSqKtJ5cjvl7r07HHUY5NYdvY2VMrpIxnNKWVSRSVV5F4LXRu591yv_KQnIcUo5TSnjlHKcUo7JdPKEqLWN9n_J_5luvotaZ5tD9P025Ty-CJxC-gWWHYEj</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Zhang, Hongchao</creator><creator>Meng, You</creator><creator>Song, Longfei</creator><creator>Luo, Linqu</creator><creator>Qin, Yuanbin</creator><creator>Han, Ning</creator><creator>Yang, Zaixing</creator><creator>Liu, Lei</creator><creator>Ho, Johnny C.</creator><creator>Wang, Fengyun</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180301</creationdate><title>High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks</title><author>Zhang, Hongchao ; Meng, You ; Song, Longfei ; Luo, Linqu ; Qin, Yuanbin ; Han, Ning ; Yang, Zaixing ; Liu, Lei ; Ho, Johnny C. ; Wang, Fengyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-99f985eb45475576e590406fe1ba78a692af78200211f6972a90a599d050cac83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carrier mobility</topic><topic>Chemistry and Materials Science</topic><topic>Circuit design</topic><topic>Condensed Matter Physics</topic><topic>Design modifications</topic><topic>Doping</topic><topic>Electron mobility</topic><topic>Electronics</topic><topic>Energy consumption</topic><topic>In2O3;晶体管;电影;联网;金属氧化物;电子学;漏电流;开关电流</topic><topic>Indium oxides</topic><topic>Leakage current</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Mobility</topic><topic>Nanofibers</topic><topic>Nanotechnology</topic><topic>Networks</topic><topic>Parasitics (electronics)</topic><topic>Performance enhancement</topic><topic>Research Article</topic><topic>Semiconductor devices</topic><topic>Thin film transistors</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongchao</creatorcontrib><creatorcontrib>Meng, You</creatorcontrib><creatorcontrib>Song, Longfei</creatorcontrib><creatorcontrib>Luo, Linqu</creatorcontrib><creatorcontrib>Qin, Yuanbin</creatorcontrib><creatorcontrib>Han, Ning</creatorcontrib><creatorcontrib>Yang, Zaixing</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Ho, Johnny C.</creatorcontrib><creatorcontrib>Wang, Fengyun</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hongchao</au><au>Meng, You</au><au>Song, Longfei</au><au>Luo, Linqu</au><au>Qin, Yuanbin</au><au>Han, Ning</au><au>Yang, Zaixing</au><au>Liu, Lei</au><au>Ho, Johnny C.</au><au>Wang, Fengyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>11</volume><issue>3</issue><spage>1227</spage><epage>1237</epage><pages>1227-1237</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Although In2O3 nanofibers (NFs) are well-known candidates as active materials for next-generation, low-cost electronics, these NF based devices still suffer from high leakage current, insufficient on-off current ratios (Ion/Ioff), and large, negative threshold voltages (VTH), leading to poor device performance, parasitic energy consumption, and rather complicated circuit design. Here, instead of the conventional surface modification of In2O3 NFs, we present a one-step electrospinning process (i.e., without hot-press) to obtain controllable Mg-doped In2O3 NF networks to achieve high-performance enhancement-mode thin-film transistors (TFTs). By simply adjusting the Mg doping concentration, the device performance can be manipulated precisely. For the optimal doping concentration of 2 mol%, the devices exhibit a small VTH (3.2 V), high saturation current (1.1 × 10^-4 A), large on/off current ratio (〉 10^8), and respectable peak carrier mobility (2.04 cm2/(V.s)), corresponding to one of the best device performances among all 1D metal-oxide NFs based devices reported so far. When high-K HfOx thin films are employed as the gate dielectric, their electron mobility and VTH can be further improved to 5.30 cm^2/(V.s) and 0.9 V, respectivel), which demonstrates the promising prospect of these Mg-doped In2O3 NF networks for high- performance, large-scale, and low-power electronics.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1735-8</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2018-03, Vol.11 (3), p.1227-1237 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2001476225 |
source | SpringerLink Journals |
subjects | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Carrier mobility Chemistry and Materials Science Circuit design Condensed Matter Physics Design modifications Doping Electron mobility Electronics Energy consumption In2O3 晶体管 电影 联网 金属氧化物 电子学 漏电流 开关电流 Indium oxides Leakage current Materials Science Metal oxides Mobility Nanofibers Nanotechnology Networks Parasitics (electronics) Performance enhancement Research Article Semiconductor devices Thin film transistors Thin films Transistors |
title | High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20enhancement-mode%20thin-film%20transistors%20based%20on%20Mg-doped%20In2O3%20nanofiber%20networks&rft.jtitle=Nano%20research&rft.au=Zhang,%20Hongchao&rft.date=2018-03-01&rft.volume=11&rft.issue=3&rft.spage=1227&rft.epage=1237&rft.pages=1227-1237&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1735-8&rft_dat=%3Cproquest_cross%3E2001476225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001476225&rft_id=info:pmid/&rft_cqvip_id=674750720&rfr_iscdi=true |