Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation

To address the insufficient electrocatalytic activity and stability of formic acid oxidation reaction (FAOR) electrocatalysts, as well as their high cost, we herein demonstrate the facile hydrothermal synthesis of ultrathin AgPt alloy nanowires using amine-terminated poly(N-isopropylacrylamide) (PNI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2018-01, Vol.11 (1), p.499-510
Hauptverfasser: Jiang, Xian, Fu, Gengtao, Wu, Xia, Liu, Yang, Zhang, Mingyi, Sun, Dongmei, Xu, Lin, Tang, Yawen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 510
container_issue 1
container_start_page 499
container_title Nano research
container_volume 11
creator Jiang, Xian
Fu, Gengtao
Wu, Xia
Liu, Yang
Zhang, Mingyi
Sun, Dongmei
Xu, Lin
Tang, Yawen
description To address the insufficient electrocatalytic activity and stability of formic acid oxidation reaction (FAOR) electrocatalysts, as well as their high cost, we herein demonstrate the facile hydrothermal synthesis of ultrathin AgPt alloy nanowires using amine-terminated poly(N-isopropylacrylamide) (PNIPAM-NH2) as a structure-directing agent. The initial generation of AgC1 precipitates, subsequent formation of AgPt nanoparticles, and their oriented attachment account for the formation of ultrathin AgPt alloy nanowires. Benefiting from their unique one-dimensional (1D) anisotropy and alloyed composition, the prepared ultrathin AgPt nanowires exhibit a superior electrocatalytic activity and better CO tolerance for the FAOR, reaching a 1.6-fold and 3.7-fold higher specific current density than AgPt nanoparticles and a commercial Pt black catalyst, respectively. Additionally, the ultrathin AgPt alloy nanowires manifest a superior electrochemical stability and structural robustness during electrocatalysis, making them a promising FAOR electrocatalyst. This work not only provides a reliable strategy for the synthesis of noble metal-based ultrathin nanowires, but also opens an avenue towards the rational des ign of efficient electrocatalysts for fuel cell systems.
doi_str_mv 10.1007/s12274-017-1658-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001475933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674733649</cqvip_id><sourcerecordid>2001475933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-82f701991eb6f7d199ce0e673581f2a519a2da814fbaa953adf7edb65fc74283</originalsourceid><addsrcrecordid>eNp9UE1PwzAMrRBIjMEP4BbBuZCvNu1xmviSJsFhXIm8NOkydc2WZIL9ezJ1wA3Lli35PT_rZdk1wXcEY3EfCKWC55iInJRFlfOTbETquspxitOfmVB-nl2EsMK4pIRXo-zjvYse4tL2aNK-RQRd5_aoh959Wq8DgpRoadtlvtHeOL-GXmmkO62idwoidPsQUVocam0VAmUb5L5sA9G6_jI7M9AFfXXs42z--DCfPuez16eX6WSWK47rmFfUCJxeJHpRGtGkSWmsS8GKihgKBamBNlARbhYAdcGgMUI3i7IwSnBasXF2O5zdeLfd6RDlyu18nxQlxZhwUdSMJRQZUMq7ELw2cuPtGvxeEiwPLsrBRZlclAcXJU8cOnBCwvat9n-X_yPdHIWWrm-3iferVAouGCt5zb4BbVWBXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001475933</pqid></control><display><type>article</type><title>Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jiang, Xian ; Fu, Gengtao ; Wu, Xia ; Liu, Yang ; Zhang, Mingyi ; Sun, Dongmei ; Xu, Lin ; Tang, Yawen</creator><creatorcontrib>Jiang, Xian ; Fu, Gengtao ; Wu, Xia ; Liu, Yang ; Zhang, Mingyi ; Sun, Dongmei ; Xu, Lin ; Tang, Yawen</creatorcontrib><description>To address the insufficient electrocatalytic activity and stability of formic acid oxidation reaction (FAOR) electrocatalysts, as well as their high cost, we herein demonstrate the facile hydrothermal synthesis of ultrathin AgPt alloy nanowires using amine-terminated poly(N-isopropylacrylamide) (PNIPAM-NH2) as a structure-directing agent. The initial generation of AgC1 precipitates, subsequent formation of AgPt nanoparticles, and their oriented attachment account for the formation of ultrathin AgPt alloy nanowires. Benefiting from their unique one-dimensional (1D) anisotropy and alloyed composition, the prepared ultrathin AgPt nanowires exhibit a superior electrocatalytic activity and better CO tolerance for the FAOR, reaching a 1.6-fold and 3.7-fold higher specific current density than AgPt nanoparticles and a commercial Pt black catalyst, respectively. Additionally, the ultrathin AgPt alloy nanowires manifest a superior electrochemical stability and structural robustness during electrocatalysis, making them a promising FAOR electrocatalyst. This work not only provides a reliable strategy for the synthesis of noble metal-based ultrathin nanowires, but also opens an avenue towards the rational des ign of efficient electrocatalysts for fuel cell systems.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1658-4</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Anisotropy ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrocatalysts ; Electrochemistry ; Formic acid ; Isopropylacrylamide ; Materials Science ; Nanoparticles ; Nanotechnology ; Nanowires ; Noble metals ; Oxidation ; Platinum ; Poly(N-isopropylacrylamide) ; Precipitates ; Research Article ; Silver chloride ; Structural stability ; Synthesis ; 氧化反应;合金;poly;电气化学;稳定性;代理人;密度比;催化剂</subject><ispartof>Nano research, 2018-01, Vol.11 (1), p.499-510</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany 2018</rights><rights>Nano Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-82f701991eb6f7d199ce0e673581f2a519a2da814fbaa953adf7edb65fc74283</citedby><cites>FETCH-LOGICAL-c409t-82f701991eb6f7d199ce0e673581f2a519a2da814fbaa953adf7edb65fc74283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-017-1658-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-017-1658-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jiang, Xian</creatorcontrib><creatorcontrib>Fu, Gengtao</creatorcontrib><creatorcontrib>Wu, Xia</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zhang, Mingyi</creatorcontrib><creatorcontrib>Sun, Dongmei</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Tang, Yawen</creatorcontrib><title>Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>To address the insufficient electrocatalytic activity and stability of formic acid oxidation reaction (FAOR) electrocatalysts, as well as their high cost, we herein demonstrate the facile hydrothermal synthesis of ultrathin AgPt alloy nanowires using amine-terminated poly(N-isopropylacrylamide) (PNIPAM-NH2) as a structure-directing agent. The initial generation of AgC1 precipitates, subsequent formation of AgPt nanoparticles, and their oriented attachment account for the formation of ultrathin AgPt alloy nanowires. Benefiting from their unique one-dimensional (1D) anisotropy and alloyed composition, the prepared ultrathin AgPt nanowires exhibit a superior electrocatalytic activity and better CO tolerance for the FAOR, reaching a 1.6-fold and 3.7-fold higher specific current density than AgPt nanoparticles and a commercial Pt black catalyst, respectively. Additionally, the ultrathin AgPt alloy nanowires manifest a superior electrochemical stability and structural robustness during electrocatalysis, making them a promising FAOR electrocatalyst. This work not only provides a reliable strategy for the synthesis of noble metal-based ultrathin nanowires, but also opens an avenue towards the rational des ign of efficient electrocatalysts for fuel cell systems.</description><subject>Anisotropy</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Formic acid</subject><subject>Isopropylacrylamide</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>Platinum</subject><subject>Poly(N-isopropylacrylamide)</subject><subject>Precipitates</subject><subject>Research Article</subject><subject>Silver chloride</subject><subject>Structural stability</subject><subject>Synthesis</subject><subject>氧化反应;合金;poly;电气化学;稳定性;代理人;密度比;催化剂</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1PwzAMrRBIjMEP4BbBuZCvNu1xmviSJsFhXIm8NOkydc2WZIL9ezJ1wA3Lli35PT_rZdk1wXcEY3EfCKWC55iInJRFlfOTbETquspxitOfmVB-nl2EsMK4pIRXo-zjvYse4tL2aNK-RQRd5_aoh959Wq8DgpRoadtlvtHeOL-GXmmkO62idwoidPsQUVocam0VAmUb5L5sA9G6_jI7M9AFfXXs42z--DCfPuez16eX6WSWK47rmFfUCJxeJHpRGtGkSWmsS8GKihgKBamBNlARbhYAdcGgMUI3i7IwSnBasXF2O5zdeLfd6RDlyu18nxQlxZhwUdSMJRQZUMq7ELw2cuPtGvxeEiwPLsrBRZlclAcXJU8cOnBCwvat9n-X_yPdHIWWrm-3iferVAouGCt5zb4BbVWBXg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Jiang, Xian</creator><creator>Fu, Gengtao</creator><creator>Wu, Xia</creator><creator>Liu, Yang</creator><creator>Zhang, Mingyi</creator><creator>Sun, Dongmei</creator><creator>Xu, Lin</creator><creator>Tang, Yawen</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180101</creationdate><title>Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation</title><author>Jiang, Xian ; Fu, Gengtao ; Wu, Xia ; Liu, Yang ; Zhang, Mingyi ; Sun, Dongmei ; Xu, Lin ; Tang, Yawen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-82f701991eb6f7d199ce0e673581f2a519a2da814fbaa953adf7edb65fc74283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Formic acid</topic><topic>Isopropylacrylamide</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>Platinum</topic><topic>Poly(N-isopropylacrylamide)</topic><topic>Precipitates</topic><topic>Research Article</topic><topic>Silver chloride</topic><topic>Structural stability</topic><topic>Synthesis</topic><topic>氧化反应;合金;poly;电气化学;稳定性;代理人;密度比;催化剂</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xian</creatorcontrib><creatorcontrib>Fu, Gengtao</creatorcontrib><creatorcontrib>Wu, Xia</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zhang, Mingyi</creatorcontrib><creatorcontrib>Sun, Dongmei</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Tang, Yawen</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xian</au><au>Fu, Gengtao</au><au>Wu, Xia</au><au>Liu, Yang</au><au>Zhang, Mingyi</au><au>Sun, Dongmei</au><au>Xu, Lin</au><au>Tang, Yawen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>11</volume><issue>1</issue><spage>499</spage><epage>510</epage><pages>499-510</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>To address the insufficient electrocatalytic activity and stability of formic acid oxidation reaction (FAOR) electrocatalysts, as well as their high cost, we herein demonstrate the facile hydrothermal synthesis of ultrathin AgPt alloy nanowires using amine-terminated poly(N-isopropylacrylamide) (PNIPAM-NH2) as a structure-directing agent. The initial generation of AgC1 precipitates, subsequent formation of AgPt nanoparticles, and their oriented attachment account for the formation of ultrathin AgPt alloy nanowires. Benefiting from their unique one-dimensional (1D) anisotropy and alloyed composition, the prepared ultrathin AgPt nanowires exhibit a superior electrocatalytic activity and better CO tolerance for the FAOR, reaching a 1.6-fold and 3.7-fold higher specific current density than AgPt nanoparticles and a commercial Pt black catalyst, respectively. Additionally, the ultrathin AgPt alloy nanowires manifest a superior electrochemical stability and structural robustness during electrocatalysis, making them a promising FAOR electrocatalyst. This work not only provides a reliable strategy for the synthesis of noble metal-based ultrathin nanowires, but also opens an avenue towards the rational des ign of efficient electrocatalysts for fuel cell systems.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1658-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2018-01, Vol.11 (1), p.499-510
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2001475933
source SpringerLink Journals - AutoHoldings
subjects Anisotropy
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Electrocatalysts
Electrochemistry
Formic acid
Isopropylacrylamide
Materials Science
Nanoparticles
Nanotechnology
Nanowires
Noble metals
Oxidation
Platinum
Poly(N-isopropylacrylamide)
Precipitates
Research Article
Silver chloride
Structural stability
Synthesis
氧化反应
合金
poly
电气化学
稳定性
代理人
密度比
催化剂
title Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20AgPt%20alloy%20nanowires%20as%20a%20high-performance%20electrocatalyst%20for%20formic%20acid%20oxidation&rft.jtitle=Nano%20research&rft.au=Jiang,%20Xian&rft.date=2018-01-01&rft.volume=11&rft.issue=1&rft.spage=499&rft.epage=510&rft.pages=499-510&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1658-4&rft_dat=%3Cproquest_cross%3E2001475933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001475933&rft_id=info:pmid/&rft_cqvip_id=674733649&rfr_iscdi=true