Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation
To address the insufficient electrocatalytic activity and stability of formic acid oxidation reaction (FAOR) electrocatalysts, as well as their high cost, we herein demonstrate the facile hydrothermal synthesis of ultrathin AgPt alloy nanowires using amine-terminated poly(N-isopropylacrylamide) (PNI...
Gespeichert in:
Veröffentlicht in: | Nano research 2018-01, Vol.11 (1), p.499-510 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 510 |
---|---|
container_issue | 1 |
container_start_page | 499 |
container_title | Nano research |
container_volume | 11 |
creator | Jiang, Xian Fu, Gengtao Wu, Xia Liu, Yang Zhang, Mingyi Sun, Dongmei Xu, Lin Tang, Yawen |
description | To address the insufficient electrocatalytic activity and stability of formic acid oxidation reaction (FAOR) electrocatalysts, as well as their high cost, we herein demonstrate the facile hydrothermal synthesis of ultrathin AgPt alloy nanowires using amine-terminated poly(N-isopropylacrylamide) (PNIPAM-NH2) as a structure-directing agent. The initial generation of AgC1 precipitates, subsequent formation of AgPt nanoparticles, and their oriented attachment account for the formation of ultrathin AgPt alloy nanowires. Benefiting from their unique one-dimensional (1D) anisotropy and alloyed composition, the prepared ultrathin AgPt nanowires exhibit a superior electrocatalytic activity and better CO tolerance for the FAOR, reaching a 1.6-fold and 3.7-fold higher specific current density than AgPt nanoparticles and a commercial Pt black catalyst, respectively. Additionally, the ultrathin AgPt alloy nanowires manifest a superior electrochemical stability and structural robustness during electrocatalysis, making them a promising FAOR electrocatalyst. This work not only provides a reliable strategy for the synthesis of noble metal-based ultrathin nanowires, but also opens an avenue towards the rational des ign of efficient electrocatalysts for fuel cell systems. |
doi_str_mv | 10.1007/s12274-017-1658-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001475933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674733649</cqvip_id><sourcerecordid>2001475933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-82f701991eb6f7d199ce0e673581f2a519a2da814fbaa953adf7edb65fc74283</originalsourceid><addsrcrecordid>eNp9UE1PwzAMrRBIjMEP4BbBuZCvNu1xmviSJsFhXIm8NOkydc2WZIL9ezJ1wA3Lli35PT_rZdk1wXcEY3EfCKWC55iInJRFlfOTbETquspxitOfmVB-nl2EsMK4pIRXo-zjvYse4tL2aNK-RQRd5_aoh959Wq8DgpRoadtlvtHeOL-GXmmkO62idwoidPsQUVocam0VAmUb5L5sA9G6_jI7M9AFfXXs42z--DCfPuez16eX6WSWK47rmFfUCJxeJHpRGtGkSWmsS8GKihgKBamBNlARbhYAdcGgMUI3i7IwSnBasXF2O5zdeLfd6RDlyu18nxQlxZhwUdSMJRQZUMq7ELw2cuPtGvxeEiwPLsrBRZlclAcXJU8cOnBCwvat9n-X_yPdHIWWrm-3iferVAouGCt5zb4BbVWBXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001475933</pqid></control><display><type>article</type><title>Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jiang, Xian ; Fu, Gengtao ; Wu, Xia ; Liu, Yang ; Zhang, Mingyi ; Sun, Dongmei ; Xu, Lin ; Tang, Yawen</creator><creatorcontrib>Jiang, Xian ; Fu, Gengtao ; Wu, Xia ; Liu, Yang ; Zhang, Mingyi ; Sun, Dongmei ; Xu, Lin ; Tang, Yawen</creatorcontrib><description>To address the insufficient electrocatalytic activity and stability of formic acid oxidation reaction (FAOR) electrocatalysts, as well as their high cost, we herein demonstrate the facile hydrothermal synthesis of ultrathin AgPt alloy nanowires using amine-terminated poly(N-isopropylacrylamide) (PNIPAM-NH2) as a structure-directing agent. The initial generation of AgC1 precipitates, subsequent formation of AgPt nanoparticles, and their oriented attachment account for the formation of ultrathin AgPt alloy nanowires. Benefiting from their unique one-dimensional (1D) anisotropy and alloyed composition, the prepared ultrathin AgPt nanowires exhibit a superior electrocatalytic activity and better CO tolerance for the FAOR, reaching a 1.6-fold and 3.7-fold higher specific current density than AgPt nanoparticles and a commercial Pt black catalyst, respectively. Additionally, the ultrathin AgPt alloy nanowires manifest a superior electrochemical stability and structural robustness during electrocatalysis, making them a promising FAOR electrocatalyst. This work not only provides a reliable strategy for the synthesis of noble metal-based ultrathin nanowires, but also opens an avenue towards the rational des ign of efficient electrocatalysts for fuel cell systems.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1658-4</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Anisotropy ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrocatalysts ; Electrochemistry ; Formic acid ; Isopropylacrylamide ; Materials Science ; Nanoparticles ; Nanotechnology ; Nanowires ; Noble metals ; Oxidation ; Platinum ; Poly(N-isopropylacrylamide) ; Precipitates ; Research Article ; Silver chloride ; Structural stability ; Synthesis ; 氧化反应;合金;poly;电气化学;稳定性;代理人;密度比;催化剂</subject><ispartof>Nano research, 2018-01, Vol.11 (1), p.499-510</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany 2018</rights><rights>Nano Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-82f701991eb6f7d199ce0e673581f2a519a2da814fbaa953adf7edb65fc74283</citedby><cites>FETCH-LOGICAL-c409t-82f701991eb6f7d199ce0e673581f2a519a2da814fbaa953adf7edb65fc74283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-017-1658-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-017-1658-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jiang, Xian</creatorcontrib><creatorcontrib>Fu, Gengtao</creatorcontrib><creatorcontrib>Wu, Xia</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zhang, Mingyi</creatorcontrib><creatorcontrib>Sun, Dongmei</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Tang, Yawen</creatorcontrib><title>Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>To address the insufficient electrocatalytic activity and stability of formic acid oxidation reaction (FAOR) electrocatalysts, as well as their high cost, we herein demonstrate the facile hydrothermal synthesis of ultrathin AgPt alloy nanowires using amine-terminated poly(N-isopropylacrylamide) (PNIPAM-NH2) as a structure-directing agent. The initial generation of AgC1 precipitates, subsequent formation of AgPt nanoparticles, and their oriented attachment account for the formation of ultrathin AgPt alloy nanowires. Benefiting from their unique one-dimensional (1D) anisotropy and alloyed composition, the prepared ultrathin AgPt nanowires exhibit a superior electrocatalytic activity and better CO tolerance for the FAOR, reaching a 1.6-fold and 3.7-fold higher specific current density than AgPt nanoparticles and a commercial Pt black catalyst, respectively. Additionally, the ultrathin AgPt alloy nanowires manifest a superior electrochemical stability and structural robustness during electrocatalysis, making them a promising FAOR electrocatalyst. This work not only provides a reliable strategy for the synthesis of noble metal-based ultrathin nanowires, but also opens an avenue towards the rational des ign of efficient electrocatalysts for fuel cell systems.</description><subject>Anisotropy</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Formic acid</subject><subject>Isopropylacrylamide</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>Platinum</subject><subject>Poly(N-isopropylacrylamide)</subject><subject>Precipitates</subject><subject>Research Article</subject><subject>Silver chloride</subject><subject>Structural stability</subject><subject>Synthesis</subject><subject>氧化反应;合金;poly;电气化学;稳定性;代理人;密度比;催化剂</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1PwzAMrRBIjMEP4BbBuZCvNu1xmviSJsFhXIm8NOkydc2WZIL9ezJ1wA3Lli35PT_rZdk1wXcEY3EfCKWC55iInJRFlfOTbETquspxitOfmVB-nl2EsMK4pIRXo-zjvYse4tL2aNK-RQRd5_aoh959Wq8DgpRoadtlvtHeOL-GXmmkO62idwoidPsQUVocam0VAmUb5L5sA9G6_jI7M9AFfXXs42z--DCfPuez16eX6WSWK47rmFfUCJxeJHpRGtGkSWmsS8GKihgKBamBNlARbhYAdcGgMUI3i7IwSnBasXF2O5zdeLfd6RDlyu18nxQlxZhwUdSMJRQZUMq7ELw2cuPtGvxeEiwPLsrBRZlclAcXJU8cOnBCwvat9n-X_yPdHIWWrm-3iferVAouGCt5zb4BbVWBXg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Jiang, Xian</creator><creator>Fu, Gengtao</creator><creator>Wu, Xia</creator><creator>Liu, Yang</creator><creator>Zhang, Mingyi</creator><creator>Sun, Dongmei</creator><creator>Xu, Lin</creator><creator>Tang, Yawen</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180101</creationdate><title>Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation</title><author>Jiang, Xian ; Fu, Gengtao ; Wu, Xia ; Liu, Yang ; Zhang, Mingyi ; Sun, Dongmei ; Xu, Lin ; Tang, Yawen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-82f701991eb6f7d199ce0e673581f2a519a2da814fbaa953adf7edb65fc74283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Formic acid</topic><topic>Isopropylacrylamide</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>Platinum</topic><topic>Poly(N-isopropylacrylamide)</topic><topic>Precipitates</topic><topic>Research Article</topic><topic>Silver chloride</topic><topic>Structural stability</topic><topic>Synthesis</topic><topic>氧化反应;合金;poly;电气化学;稳定性;代理人;密度比;催化剂</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xian</creatorcontrib><creatorcontrib>Fu, Gengtao</creatorcontrib><creatorcontrib>Wu, Xia</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zhang, Mingyi</creatorcontrib><creatorcontrib>Sun, Dongmei</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Tang, Yawen</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xian</au><au>Fu, Gengtao</au><au>Wu, Xia</au><au>Liu, Yang</au><au>Zhang, Mingyi</au><au>Sun, Dongmei</au><au>Xu, Lin</au><au>Tang, Yawen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>11</volume><issue>1</issue><spage>499</spage><epage>510</epage><pages>499-510</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>To address the insufficient electrocatalytic activity and stability of formic acid oxidation reaction (FAOR) electrocatalysts, as well as their high cost, we herein demonstrate the facile hydrothermal synthesis of ultrathin AgPt alloy nanowires using amine-terminated poly(N-isopropylacrylamide) (PNIPAM-NH2) as a structure-directing agent. The initial generation of AgC1 precipitates, subsequent formation of AgPt nanoparticles, and their oriented attachment account for the formation of ultrathin AgPt alloy nanowires. Benefiting from their unique one-dimensional (1D) anisotropy and alloyed composition, the prepared ultrathin AgPt nanowires exhibit a superior electrocatalytic activity and better CO tolerance for the FAOR, reaching a 1.6-fold and 3.7-fold higher specific current density than AgPt nanoparticles and a commercial Pt black catalyst, respectively. Additionally, the ultrathin AgPt alloy nanowires manifest a superior electrochemical stability and structural robustness during electrocatalysis, making them a promising FAOR electrocatalyst. This work not only provides a reliable strategy for the synthesis of noble metal-based ultrathin nanowires, but also opens an avenue towards the rational des ign of efficient electrocatalysts for fuel cell systems.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1658-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2018-01, Vol.11 (1), p.499-510 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2001475933 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anisotropy Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Condensed Matter Physics Electrocatalysts Electrochemistry Formic acid Isopropylacrylamide Materials Science Nanoparticles Nanotechnology Nanowires Noble metals Oxidation Platinum Poly(N-isopropylacrylamide) Precipitates Research Article Silver chloride Structural stability Synthesis 氧化反应 合金 poly 电气化学 稳定性 代理人 密度比 催化剂 |
title | Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20AgPt%20alloy%20nanowires%20as%20a%20high-performance%20electrocatalyst%20for%20formic%20acid%20oxidation&rft.jtitle=Nano%20research&rft.au=Jiang,%20Xian&rft.date=2018-01-01&rft.volume=11&rft.issue=1&rft.spage=499&rft.epage=510&rft.pages=499-510&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1658-4&rft_dat=%3Cproquest_cross%3E2001475933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001475933&rft_id=info:pmid/&rft_cqvip_id=674733649&rfr_iscdi=true |