Tunable excitonic emission of monolayer WS2 for the optical detection of DNA nucleobases
Two-dimensional transition metal dichalcogenides (2D TMDs) possess a tunable excitonic light emission that is sensitive to external conditions such as electric field, strain, and chemical doping. In this work, we reveal the interactions between DNA nucleobases, i.e., adenine (A), guanine (G), cytosi...
Gespeichert in:
Veröffentlicht in: | Nano research 2018-03, Vol.11 (3), p.1744-1754 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1754 |
---|---|
container_issue | 3 |
container_start_page | 1744 |
container_title | Nano research |
container_volume | 11 |
creator | Feng, Shun Cong, Chunxiao Peimyoo, Namphung Chen, Yu Shang, Jingzhi Zou, Chenji Cao, Bingchen Wu, Lishu Zhang, Jing Eginligil, Mustafa Wang, Xingzhi Xiong, Qihua Ananthanarayanan, Arundithi Chen, Peng Zhang, Baile Yu, Ting |
description | Two-dimensional transition metal dichalcogenides (2D TMDs) possess a tunable excitonic light emission that is sensitive to external conditions such as electric field, strain, and chemical doping. In this work, we reveal the interactions between DNA nucleobases, i.e., adenine (A), guanine (G), cytosine (C), and thymine (T) and monolayer WS2 by investigating the changes in the photoluminescence (PL) emissions of the monolayer WS2 after coating with nucleobase solutions. We found that adenine and guanine exert a clear effect on the PL profile of the monolayer WS2 and cause different PL evolution trends. In contrast, cytosine and thymine have little effect on the PL behavior. To obtain information on the interactions between the DNA bases and WS2, a series of measurements were conducted on adenine-coated WS2 monolayers, as a demonstration. The p-type doping of the WS2 monolayers on the introduction of adenine is clearly shown by both the evolution of the PL spectra and the electrical transport response. Our findings open the door for the development of label-free optical sensing approaches in which the detection signals arise from the tunable excitonic emission of the TMD itself rather than the fluorescence signals of label molecules. This dopant-selective optical response to the DNA nucleobases fills the gaps in previously reported optical biosensing methods and indicates a potential new strategy for DNA sequencing. |
doi_str_mv | 10.1007/s12274-017-1792-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001473890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674750765</cqvip_id><sourcerecordid>2001473890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-6a9d13f326b687d5e9953b15a7da307105baf283c65bbeea13b1637092c2dd813</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7hZcA74kdjJsSpPqYIDRXCzHGfTpkrt1k4k2l-Pqxa4sZddaeebkQahS0puKCHyNlDGZJoQKhMqC5Zsj9CAFkWekDjHPzdl6Sk6C2FBiGA0zQfoc9pbXbaA4cs0nbONwbBsQmicxa7GS2ddqzfg8ccbw7XzuJsDdquuMbrFFXRguoP07mWEbW9acKUOEM7RSa3bABeHPUTvD_fT8VMyeX18Ho8mieEp7xKhi4rymjNRilxWGRRFxkuaaVlpTiQlWalrlnMjsrIE0DQ-BZekYIZVVU75EF3vfVferXsInVq43tsYqRghNJU8L0hU0b3KeBeCh1qtfLPUfqMoUbsC1b5AFQtUuwLVNjJsz4SotTPwf87_QVeHoLmzs3XkfpOETGVGpMj4N26Gfrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001473890</pqid></control><display><type>article</type><title>Tunable excitonic emission of monolayer WS2 for the optical detection of DNA nucleobases</title><source>SpringerLink Journals - AutoHoldings</source><creator>Feng, Shun ; Cong, Chunxiao ; Peimyoo, Namphung ; Chen, Yu ; Shang, Jingzhi ; Zou, Chenji ; Cao, Bingchen ; Wu, Lishu ; Zhang, Jing ; Eginligil, Mustafa ; Wang, Xingzhi ; Xiong, Qihua ; Ananthanarayanan, Arundithi ; Chen, Peng ; Zhang, Baile ; Yu, Ting</creator><creatorcontrib>Feng, Shun ; Cong, Chunxiao ; Peimyoo, Namphung ; Chen, Yu ; Shang, Jingzhi ; Zou, Chenji ; Cao, Bingchen ; Wu, Lishu ; Zhang, Jing ; Eginligil, Mustafa ; Wang, Xingzhi ; Xiong, Qihua ; Ananthanarayanan, Arundithi ; Chen, Peng ; Zhang, Baile ; Yu, Ting</creatorcontrib><description>Two-dimensional transition metal dichalcogenides (2D TMDs) possess a tunable excitonic light emission that is sensitive to external conditions such as electric field, strain, and chemical doping. In this work, we reveal the interactions between DNA nucleobases, i.e., adenine (A), guanine (G), cytosine (C), and thymine (T) and monolayer WS2 by investigating the changes in the photoluminescence (PL) emissions of the monolayer WS2 after coating with nucleobase solutions. We found that adenine and guanine exert a clear effect on the PL profile of the monolayer WS2 and cause different PL evolution trends. In contrast, cytosine and thymine have little effect on the PL behavior. To obtain information on the interactions between the DNA bases and WS2, a series of measurements were conducted on adenine-coated WS2 monolayers, as a demonstration. The p-type doping of the WS2 monolayers on the introduction of adenine is clearly shown by both the evolution of the PL spectra and the electrical transport response. Our findings open the door for the development of label-free optical sensing approaches in which the detection signals arise from the tunable excitonic emission of the TMD itself rather than the fluorescence signals of label molecules. This dopant-selective optical response to the DNA nucleobases fills the gaps in previously reported optical biosensing methods and indicates a potential new strategy for DNA sequencing.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1792-z</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Adenine ; Atomic/Molecular Structure and Spectra ; Bases (nucleic acids) ; Biomedicine ; Biosensors ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Cytosine ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; Doping ; Evolution ; Fluorescence ; Guanine ; Light emission ; Materials Science ; Monolayers ; Nanotechnology ; Photoluminescence ; Photons ; Research Article ; Thymine ; WS2;DNA;单层;激子;排放;相互作用;胸腺嘧啶;进化趋势</subject><ispartof>Nano research, 2018-03, Vol.11 (3), p.1744-1754</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany 2018</rights><rights>Nano Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-6a9d13f326b687d5e9953b15a7da307105baf283c65bbeea13b1637092c2dd813</citedby><cites>FETCH-LOGICAL-c343t-6a9d13f326b687d5e9953b15a7da307105baf283c65bbeea13b1637092c2dd813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-017-1792-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-017-1792-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Feng, Shun</creatorcontrib><creatorcontrib>Cong, Chunxiao</creatorcontrib><creatorcontrib>Peimyoo, Namphung</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Shang, Jingzhi</creatorcontrib><creatorcontrib>Zou, Chenji</creatorcontrib><creatorcontrib>Cao, Bingchen</creatorcontrib><creatorcontrib>Wu, Lishu</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Eginligil, Mustafa</creatorcontrib><creatorcontrib>Wang, Xingzhi</creatorcontrib><creatorcontrib>Xiong, Qihua</creatorcontrib><creatorcontrib>Ananthanarayanan, Arundithi</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Zhang, Baile</creatorcontrib><creatorcontrib>Yu, Ting</creatorcontrib><title>Tunable excitonic emission of monolayer WS2 for the optical detection of DNA nucleobases</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>Two-dimensional transition metal dichalcogenides (2D TMDs) possess a tunable excitonic light emission that is sensitive to external conditions such as electric field, strain, and chemical doping. In this work, we reveal the interactions between DNA nucleobases, i.e., adenine (A), guanine (G), cytosine (C), and thymine (T) and monolayer WS2 by investigating the changes in the photoluminescence (PL) emissions of the monolayer WS2 after coating with nucleobase solutions. We found that adenine and guanine exert a clear effect on the PL profile of the monolayer WS2 and cause different PL evolution trends. In contrast, cytosine and thymine have little effect on the PL behavior. To obtain information on the interactions between the DNA bases and WS2, a series of measurements were conducted on adenine-coated WS2 monolayers, as a demonstration. The p-type doping of the WS2 monolayers on the introduction of adenine is clearly shown by both the evolution of the PL spectra and the electrical transport response. Our findings open the door for the development of label-free optical sensing approaches in which the detection signals arise from the tunable excitonic emission of the TMD itself rather than the fluorescence signals of label molecules. This dopant-selective optical response to the DNA nucleobases fills the gaps in previously reported optical biosensing methods and indicates a potential new strategy for DNA sequencing.</description><subject>Adenine</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Bases (nucleic acids)</subject><subject>Biomedicine</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Cytosine</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Doping</subject><subject>Evolution</subject><subject>Fluorescence</subject><subject>Guanine</subject><subject>Light emission</subject><subject>Materials Science</subject><subject>Monolayers</subject><subject>Nanotechnology</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Research Article</subject><subject>Thymine</subject><subject>WS2;DNA;单层;激子;排放;相互作用;胸腺嘧啶;进化趋势</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwA7hZcA74kdjJsSpPqYIDRXCzHGfTpkrt1k4k2l-Pqxa4sZddaeebkQahS0puKCHyNlDGZJoQKhMqC5Zsj9CAFkWekDjHPzdl6Sk6C2FBiGA0zQfoc9pbXbaA4cs0nbONwbBsQmicxa7GS2ddqzfg8ccbw7XzuJsDdquuMbrFFXRguoP07mWEbW9acKUOEM7RSa3bABeHPUTvD_fT8VMyeX18Ho8mieEp7xKhi4rymjNRilxWGRRFxkuaaVlpTiQlWalrlnMjsrIE0DQ-BZekYIZVVU75EF3vfVferXsInVq43tsYqRghNJU8L0hU0b3KeBeCh1qtfLPUfqMoUbsC1b5AFQtUuwLVNjJsz4SotTPwf87_QVeHoLmzs3XkfpOETGVGpMj4N26Gfrg</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Feng, Shun</creator><creator>Cong, Chunxiao</creator><creator>Peimyoo, Namphung</creator><creator>Chen, Yu</creator><creator>Shang, Jingzhi</creator><creator>Zou, Chenji</creator><creator>Cao, Bingchen</creator><creator>Wu, Lishu</creator><creator>Zhang, Jing</creator><creator>Eginligil, Mustafa</creator><creator>Wang, Xingzhi</creator><creator>Xiong, Qihua</creator><creator>Ananthanarayanan, Arundithi</creator><creator>Chen, Peng</creator><creator>Zhang, Baile</creator><creator>Yu, Ting</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180301</creationdate><title>Tunable excitonic emission of monolayer WS2 for the optical detection of DNA nucleobases</title><author>Feng, Shun ; Cong, Chunxiao ; Peimyoo, Namphung ; Chen, Yu ; Shang, Jingzhi ; Zou, Chenji ; Cao, Bingchen ; Wu, Lishu ; Zhang, Jing ; Eginligil, Mustafa ; Wang, Xingzhi ; Xiong, Qihua ; Ananthanarayanan, Arundithi ; Chen, Peng ; Zhang, Baile ; Yu, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-6a9d13f326b687d5e9953b15a7da307105baf283c65bbeea13b1637092c2dd813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adenine</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Bases (nucleic acids)</topic><topic>Biomedicine</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Cytosine</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Doping</topic><topic>Evolution</topic><topic>Fluorescence</topic><topic>Guanine</topic><topic>Light emission</topic><topic>Materials Science</topic><topic>Monolayers</topic><topic>Nanotechnology</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Research Article</topic><topic>Thymine</topic><topic>WS2;DNA;单层;激子;排放;相互作用;胸腺嘧啶;进化趋势</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Shun</creatorcontrib><creatorcontrib>Cong, Chunxiao</creatorcontrib><creatorcontrib>Peimyoo, Namphung</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Shang, Jingzhi</creatorcontrib><creatorcontrib>Zou, Chenji</creatorcontrib><creatorcontrib>Cao, Bingchen</creatorcontrib><creatorcontrib>Wu, Lishu</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Eginligil, Mustafa</creatorcontrib><creatorcontrib>Wang, Xingzhi</creatorcontrib><creatorcontrib>Xiong, Qihua</creatorcontrib><creatorcontrib>Ananthanarayanan, Arundithi</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Zhang, Baile</creatorcontrib><creatorcontrib>Yu, Ting</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Shun</au><au>Cong, Chunxiao</au><au>Peimyoo, Namphung</au><au>Chen, Yu</au><au>Shang, Jingzhi</au><au>Zou, Chenji</au><au>Cao, Bingchen</au><au>Wu, Lishu</au><au>Zhang, Jing</au><au>Eginligil, Mustafa</au><au>Wang, Xingzhi</au><au>Xiong, Qihua</au><au>Ananthanarayanan, Arundithi</au><au>Chen, Peng</au><au>Zhang, Baile</au><au>Yu, Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable excitonic emission of monolayer WS2 for the optical detection of DNA nucleobases</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>11</volume><issue>3</issue><spage>1744</spage><epage>1754</epage><pages>1744-1754</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Two-dimensional transition metal dichalcogenides (2D TMDs) possess a tunable excitonic light emission that is sensitive to external conditions such as electric field, strain, and chemical doping. In this work, we reveal the interactions between DNA nucleobases, i.e., adenine (A), guanine (G), cytosine (C), and thymine (T) and monolayer WS2 by investigating the changes in the photoluminescence (PL) emissions of the monolayer WS2 after coating with nucleobase solutions. We found that adenine and guanine exert a clear effect on the PL profile of the monolayer WS2 and cause different PL evolution trends. In contrast, cytosine and thymine have little effect on the PL behavior. To obtain information on the interactions between the DNA bases and WS2, a series of measurements were conducted on adenine-coated WS2 monolayers, as a demonstration. The p-type doping of the WS2 monolayers on the introduction of adenine is clearly shown by both the evolution of the PL spectra and the electrical transport response. Our findings open the door for the development of label-free optical sensing approaches in which the detection signals arise from the tunable excitonic emission of the TMD itself rather than the fluorescence signals of label molecules. This dopant-selective optical response to the DNA nucleobases fills the gaps in previously reported optical biosensing methods and indicates a potential new strategy for DNA sequencing.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1792-z</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2018-03, Vol.11 (3), p.1744-1754 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2001473890 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adenine Atomic/Molecular Structure and Spectra Bases (nucleic acids) Biomedicine Biosensors Biotechnology Chemistry and Materials Science Condensed Matter Physics Cytosine Deoxyribonucleic acid DNA DNA sequencing Doping Evolution Fluorescence Guanine Light emission Materials Science Monolayers Nanotechnology Photoluminescence Photons Research Article Thymine WS2 DNA 单层 激子 排放 相互作用 胸腺嘧啶 进化趋势 |
title | Tunable excitonic emission of monolayer WS2 for the optical detection of DNA nucleobases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T13%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20excitonic%20emission%20of%20monolayer%20WS2%20for%20the%20optical%20detection%20of%20DNA%20nucleobases&rft.jtitle=Nano%20research&rft.au=Feng,%20Shun&rft.date=2018-03-01&rft.volume=11&rft.issue=3&rft.spage=1744&rft.epage=1754&rft.pages=1744-1754&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1792-z&rft_dat=%3Cproquest_cross%3E2001473890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001473890&rft_id=info:pmid/&rft_cqvip_id=674750765&rfr_iscdi=true |