Highly π-extended copolymer as additive-free hole- transport material for perovskite solar cells
Organolead halide perovskite solar ceils have achieved a certified power- conversion efficiency (PCE) of 22.1% and are thus among the most promising candidates for next-generation photovoltaic devices. To date, most high-efficiency perovskite solar cells have employed arylamine-based hole-transport...
Gespeichert in:
Veröffentlicht in: | Nano research 2018, Vol.11 (1), p.185-194 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194 |
---|---|
container_issue | 1 |
container_start_page | 185 |
container_title | Nano research |
container_volume | 11 |
creator | Liu, Jie Ge, Qianqing Zhang, Weifeng Ma, Jingyuan Ding, Jie Yu, Gui Hu, Jinsong |
description | Organolead halide perovskite solar ceils have achieved a certified power- conversion efficiency (PCE) of 22.1% and are thus among the most promising candidates for next-generation photovoltaic devices. To date, most high-efficiency perovskite solar cells have employed arylamine-based hole-transport materials (HTMs), which are expensive and have a low mobility. The complicated doping procedures and the potentially stability-adverse dopants used in these HTMs are among the major bottlenecks for the commercialization of perovskite solar cells (PSCs). Herein, we present a polythiophene-based copolymer (PDVT-10) with a hole mobility up to 8.2 cm2-V-l.s-1 and a highest occupied molecular orbital level of -5.28 eV as a hole-transport layer (HTL) for a PSC. A device based on this new HTM exhibited a high PCE of 13.4% under 100 mW-cm-2 illumination, which is one of the highest PCEs reported for the dopant-free polymer-based HTLs. Moreover, PDVT-10 exhibited good solution processability, decent air stability, and thermal stability, making it a promising candidate as an HTM for PSCs. |
doi_str_mv | 10.1007/s12274-017-1618-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001473036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674733620</cqvip_id><sourcerecordid>2001473036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-2a9b4c0750fbd388d12641b4d287ccd6837b338a8b4bf96eed0211a19c06faba3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhSMEEqXwA9gsmA0-2zjOiCqgSJVYYLac-NKmpHFqpxXtxD_kL5GqBTZuuRve997pJcklsBtgLL2NwHkqKYOUggJNt0fJALJMU9bP8c8NXJ4mZzHOGVMcpB4kdlxNZ_WGfH1S_OiwcehI4VtfbxYYiI3EOld11RppGRDJzNdISRdsE1sfOrKwHYbK1qT0gbQY_Dq-Vx2S6GsbSIF1Hc-Tk9LWES8Oe5i8PT68jsZ08vL0PLqf0EJI0VFus1wWLL1jZe6E1g64kpBLx3VaFE5pkeZCaKtzmZeZQnSMA1jICqZKm1sxTK73vm3wyxXGzsz9KjR9pOGMgUwFE6pXwV5VBB9jwNK0oVrYsDHAzK5Js2_S9E2aXZNm2zN8z8Re20wx_Dn_B10dgma-mS577jdJpf0zQnEmvgEGuoP3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001473036</pqid></control><display><type>article</type><title>Highly π-extended copolymer as additive-free hole- transport material for perovskite solar cells</title><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Jie ; Ge, Qianqing ; Zhang, Weifeng ; Ma, Jingyuan ; Ding, Jie ; Yu, Gui ; Hu, Jinsong</creator><creatorcontrib>Liu, Jie ; Ge, Qianqing ; Zhang, Weifeng ; Ma, Jingyuan ; Ding, Jie ; Yu, Gui ; Hu, Jinsong</creatorcontrib><description>Organolead halide perovskite solar ceils have achieved a certified power- conversion efficiency (PCE) of 22.1% and are thus among the most promising candidates for next-generation photovoltaic devices. To date, most high-efficiency perovskite solar cells have employed arylamine-based hole-transport materials (HTMs), which are expensive and have a low mobility. The complicated doping procedures and the potentially stability-adverse dopants used in these HTMs are among the major bottlenecks for the commercialization of perovskite solar cells (PSCs). Herein, we present a polythiophene-based copolymer (PDVT-10) with a hole mobility up to 8.2 cm2-V-l.s-1 and a highest occupied molecular orbital level of -5.28 eV as a hole-transport layer (HTL) for a PSC. A device based on this new HTM exhibited a high PCE of 13.4% under 100 mW-cm-2 illumination, which is one of the highest PCEs reported for the dopant-free polymer-based HTLs. Moreover, PDVT-10 exhibited good solution processability, decent air stability, and thermal stability, making it a promising candidate as an HTM for PSCs.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1618-z</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Commercialization ; Condensed Matter Physics ; Dopants ; Energy conversion efficiency ; Hole mobility ; Materials Science ; Mobility ; Molecular orbitals ; Nanotechnology ; Organolead compounds ; Photovoltaic cells ; Photovoltaics ; Polymers ; Polythiophene ; Research Article ; Solar cells ; Thermal stability ; Transport ; 太阳能电池;共聚物;运输;材料;添加剂;空气稳定性;HTM;变换效率</subject><ispartof>Nano research, 2018, Vol.11 (1), p.185-194</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany 2018</rights><rights>Nano Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-2a9b4c0750fbd388d12641b4d287ccd6837b338a8b4bf96eed0211a19c06faba3</citedby><cites>FETCH-LOGICAL-c343t-2a9b4c0750fbd388d12641b4d287ccd6837b338a8b4bf96eed0211a19c06faba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-017-1618-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-017-1618-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Ge, Qianqing</creatorcontrib><creatorcontrib>Zhang, Weifeng</creatorcontrib><creatorcontrib>Ma, Jingyuan</creatorcontrib><creatorcontrib>Ding, Jie</creatorcontrib><creatorcontrib>Yu, Gui</creatorcontrib><creatorcontrib>Hu, Jinsong</creatorcontrib><title>Highly π-extended copolymer as additive-free hole- transport material for perovskite solar cells</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>Organolead halide perovskite solar ceils have achieved a certified power- conversion efficiency (PCE) of 22.1% and are thus among the most promising candidates for next-generation photovoltaic devices. To date, most high-efficiency perovskite solar cells have employed arylamine-based hole-transport materials (HTMs), which are expensive and have a low mobility. The complicated doping procedures and the potentially stability-adverse dopants used in these HTMs are among the major bottlenecks for the commercialization of perovskite solar cells (PSCs). Herein, we present a polythiophene-based copolymer (PDVT-10) with a hole mobility up to 8.2 cm2-V-l.s-1 and a highest occupied molecular orbital level of -5.28 eV as a hole-transport layer (HTL) for a PSC. A device based on this new HTM exhibited a high PCE of 13.4% under 100 mW-cm-2 illumination, which is one of the highest PCEs reported for the dopant-free polymer-based HTLs. Moreover, PDVT-10 exhibited good solution processability, decent air stability, and thermal stability, making it a promising candidate as an HTM for PSCs.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Commercialization</subject><subject>Condensed Matter Physics</subject><subject>Dopants</subject><subject>Energy conversion efficiency</subject><subject>Hole mobility</subject><subject>Materials Science</subject><subject>Mobility</subject><subject>Molecular orbitals</subject><subject>Nanotechnology</subject><subject>Organolead compounds</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Polymers</subject><subject>Polythiophene</subject><subject>Research Article</subject><subject>Solar cells</subject><subject>Thermal stability</subject><subject>Transport</subject><subject>太阳能电池;共聚物;运输;材料;添加剂;空气稳定性;HTM;变换效率</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kDFPwzAQhSMEEqXwA9gsmA0-2zjOiCqgSJVYYLac-NKmpHFqpxXtxD_kL5GqBTZuuRve997pJcklsBtgLL2NwHkqKYOUggJNt0fJALJMU9bP8c8NXJ4mZzHOGVMcpB4kdlxNZ_WGfH1S_OiwcehI4VtfbxYYiI3EOld11RppGRDJzNdISRdsE1sfOrKwHYbK1qT0gbQY_Dq-Vx2S6GsbSIF1Hc-Tk9LWES8Oe5i8PT68jsZ08vL0PLqf0EJI0VFus1wWLL1jZe6E1g64kpBLx3VaFE5pkeZCaKtzmZeZQnSMA1jICqZKm1sxTK73vm3wyxXGzsz9KjR9pOGMgUwFE6pXwV5VBB9jwNK0oVrYsDHAzK5Js2_S9E2aXZNm2zN8z8Re20wx_Dn_B10dgma-mS577jdJpf0zQnEmvgEGuoP3</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Liu, Jie</creator><creator>Ge, Qianqing</creator><creator>Zhang, Weifeng</creator><creator>Ma, Jingyuan</creator><creator>Ding, Jie</creator><creator>Yu, Gui</creator><creator>Hu, Jinsong</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2018</creationdate><title>Highly π-extended copolymer as additive-free hole- transport material for perovskite solar cells</title><author>Liu, Jie ; Ge, Qianqing ; Zhang, Weifeng ; Ma, Jingyuan ; Ding, Jie ; Yu, Gui ; Hu, Jinsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-2a9b4c0750fbd388d12641b4d287ccd6837b338a8b4bf96eed0211a19c06faba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Commercialization</topic><topic>Condensed Matter Physics</topic><topic>Dopants</topic><topic>Energy conversion efficiency</topic><topic>Hole mobility</topic><topic>Materials Science</topic><topic>Mobility</topic><topic>Molecular orbitals</topic><topic>Nanotechnology</topic><topic>Organolead compounds</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Polymers</topic><topic>Polythiophene</topic><topic>Research Article</topic><topic>Solar cells</topic><topic>Thermal stability</topic><topic>Transport</topic><topic>太阳能电池;共聚物;运输;材料;添加剂;空气稳定性;HTM;变换效率</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Ge, Qianqing</creatorcontrib><creatorcontrib>Zhang, Weifeng</creatorcontrib><creatorcontrib>Ma, Jingyuan</creatorcontrib><creatorcontrib>Ding, Jie</creatorcontrib><creatorcontrib>Yu, Gui</creatorcontrib><creatorcontrib>Hu, Jinsong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jie</au><au>Ge, Qianqing</au><au>Zhang, Weifeng</au><au>Ma, Jingyuan</au><au>Ding, Jie</au><au>Yu, Gui</au><au>Hu, Jinsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly π-extended copolymer as additive-free hole- transport material for perovskite solar cells</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2018</date><risdate>2018</risdate><volume>11</volume><issue>1</issue><spage>185</spage><epage>194</epage><pages>185-194</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Organolead halide perovskite solar ceils have achieved a certified power- conversion efficiency (PCE) of 22.1% and are thus among the most promising candidates for next-generation photovoltaic devices. To date, most high-efficiency perovskite solar cells have employed arylamine-based hole-transport materials (HTMs), which are expensive and have a low mobility. The complicated doping procedures and the potentially stability-adverse dopants used in these HTMs are among the major bottlenecks for the commercialization of perovskite solar cells (PSCs). Herein, we present a polythiophene-based copolymer (PDVT-10) with a hole mobility up to 8.2 cm2-V-l.s-1 and a highest occupied molecular orbital level of -5.28 eV as a hole-transport layer (HTL) for a PSC. A device based on this new HTM exhibited a high PCE of 13.4% under 100 mW-cm-2 illumination, which is one of the highest PCEs reported for the dopant-free polymer-based HTLs. Moreover, PDVT-10 exhibited good solution processability, decent air stability, and thermal stability, making it a promising candidate as an HTM for PSCs.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1618-z</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2018, Vol.11 (1), p.185-194 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2001473036 |
source | Springer Nature - Complete Springer Journals |
subjects | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Commercialization Condensed Matter Physics Dopants Energy conversion efficiency Hole mobility Materials Science Mobility Molecular orbitals Nanotechnology Organolead compounds Photovoltaic cells Photovoltaics Polymers Polythiophene Research Article Solar cells Thermal stability Transport 太阳能电池 共聚物 运输 材料 添加剂 空气稳定性 HTM 变换效率 |
title | Highly π-extended copolymer as additive-free hole- transport material for perovskite solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20%CF%80-extended%20copolymer%20as%20additive-free%20hole-%20transport%20material%20for%20perovskite%20solar%20cells&rft.jtitle=Nano%20research&rft.au=Liu,%20Jie&rft.date=2018&rft.volume=11&rft.issue=1&rft.spage=185&rft.epage=194&rft.pages=185-194&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1618-z&rft_dat=%3Cproquest_cross%3E2001473036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001473036&rft_id=info:pmid/&rft_cqvip_id=674733620&rfr_iscdi=true |