Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts
The development of highly active and cost-effective hydrogen evolution reaction (HER) catalysts is of vital importance to addressing global energy issues. Here, a three-dimensional interconnected porous carbon nanofiber (PCNF) membrane has been developed and utilized as a support for active cobalt p...
Gespeichert in:
Veröffentlicht in: | Nano research 2018-03, Vol.11 (3), p.1274-1284 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1284 |
---|---|
container_issue | 3 |
container_start_page | 1274 |
container_title | Nano research |
container_volume | 11 |
creator | Lu, Hengyi Fan, Wei Huang, Yunpeng Liu, Tianxi |
description | The development of highly active and cost-effective hydrogen evolution reaction (HER) catalysts is of vital importance to addressing global energy issues. Here, a three-dimensional interconnected porous carbon nanofiber (PCNF) membrane has been developed and utilized as a support for active cobalt phosphide (COP) nanoparticles. This rationally designed self-supported HER catalyst has a lotus root-like multichannel structure, which provides several intrinsic advantages over conventional CNFs. The longitudinal channels can store the electrolyte and ensure fast ion and mass transport within the catalysts. Additionally, mesopores on the outer and inner carbon walls enhance ion and mass migration of the electrolyte to HER active CoP nanoparticles, thus shortening the ion transport distance and increasing the contact area between the electrolyte and the CoP nanoparticles. Moreover, the conductive carbon substrate provides fast electron transfer pathways by forming an integrated conductive network, which further ensures fast HER kinetics. As a result, the CoP/PCNF composites exhibit low onset-potentials (-20, -91, and -84 mV in 0.5 M H2SO4, 1 M PBS, and 1 M KOH, respectively). These findings show that CoP/PCNF composites are promising self-supporting and high-performance all-pH range HER catalysts. |
doi_str_mv | 10.1007/s12274-017-1741-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001473029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674750724</cqvip_id><sourcerecordid>2001473029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-187548d3d0fbc5996c42d23131c65a63128893a18ab7cb50c139601c184332a3</originalsourceid><addsrcrecordid>eNp9UE1PwzAMrRBIjMEP4BbBORAnadMe0QQMaRIcdo_SNF07StMlKbB_T8YG3LAs2bLfh_SS5BLIDRAibj1QKjgmIDAIDvjzKJlAUeSYxDr-2YHy0-TM-zUhGQWeT5JxYcPokbM24K59NWiwzsaDVq60PepVb-u2NA6pXjfWmQp9tKFBM_vy_RuUC63ujEcqdtfhYY6abeXsyvTIvNtuDG2UMZ3RwVmtguq2Pvjz5KRWnTcXhzlNlg_3y9kcL54fn2Z3C6wZZwFDLlKeV6widanTosg0pxVlwEBnqcoY0DwvmIJclUKXKdHAioyAhpwzRhWbJtd72cHZzWh8kGs7uj46SkoIcMEILSIK9ijtrPfO1HJw7ZtyWwlE7sKV-3BlDFfuwpWfkUP3HB-x_cq4P-X_SFcHo8b2q03k_TplgouUCMrZF3Q2iXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001473029</pqid></control><display><type>article</type><title>Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lu, Hengyi ; Fan, Wei ; Huang, Yunpeng ; Liu, Tianxi</creator><creatorcontrib>Lu, Hengyi ; Fan, Wei ; Huang, Yunpeng ; Liu, Tianxi</creatorcontrib><description>The development of highly active and cost-effective hydrogen evolution reaction (HER) catalysts is of vital importance to addressing global energy issues. Here, a three-dimensional interconnected porous carbon nanofiber (PCNF) membrane has been developed and utilized as a support for active cobalt phosphide (COP) nanoparticles. This rationally designed self-supported HER catalyst has a lotus root-like multichannel structure, which provides several intrinsic advantages over conventional CNFs. The longitudinal channels can store the electrolyte and ensure fast ion and mass transport within the catalysts. Additionally, mesopores on the outer and inner carbon walls enhance ion and mass migration of the electrolyte to HER active CoP nanoparticles, thus shortening the ion transport distance and increasing the contact area between the electrolyte and the CoP nanoparticles. Moreover, the conductive carbon substrate provides fast electron transfer pathways by forming an integrated conductive network, which further ensures fast HER kinetics. As a result, the CoP/PCNF composites exhibit low onset-potentials (-20, -91, and -84 mV in 0.5 M H2SO4, 1 M PBS, and 1 M KOH, respectively). These findings show that CoP/PCNF composites are promising self-supporting and high-performance all-pH range HER catalysts.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1741-x</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Carbon ; Carbon fibers ; Carbon sources ; Catalysis ; Catalysts ; Chemistry and Materials Science ; Cobalt ; Condensed Matter Physics ; Electrocatalysts ; Electrolytes ; Electron transfer ; Hydrogen evolution reactions ; Ion transport ; Mass transport ; Materials Science ; Migration ; Nanofibers ; Nanoparticles ; Nanotechnology ; pH effects ; Phosphides ; Reaction kinetics ; Research Article ; Substrates ; Sulfuric acid ; 警察;多孔;莲花;进化;碳;抛锚;氢;运输距离</subject><ispartof>Nano research, 2018-03, Vol.11 (3), p.1274-1284</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany 2018</rights><rights>Nano Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-187548d3d0fbc5996c42d23131c65a63128893a18ab7cb50c139601c184332a3</citedby><cites>FETCH-LOGICAL-c343t-187548d3d0fbc5996c42d23131c65a63128893a18ab7cb50c139601c184332a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-017-1741-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-017-1741-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lu, Hengyi</creatorcontrib><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Huang, Yunpeng</creatorcontrib><creatorcontrib>Liu, Tianxi</creatorcontrib><title>Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>The development of highly active and cost-effective hydrogen evolution reaction (HER) catalysts is of vital importance to addressing global energy issues. Here, a three-dimensional interconnected porous carbon nanofiber (PCNF) membrane has been developed and utilized as a support for active cobalt phosphide (COP) nanoparticles. This rationally designed self-supported HER catalyst has a lotus root-like multichannel structure, which provides several intrinsic advantages over conventional CNFs. The longitudinal channels can store the electrolyte and ensure fast ion and mass transport within the catalysts. Additionally, mesopores on the outer and inner carbon walls enhance ion and mass migration of the electrolyte to HER active CoP nanoparticles, thus shortening the ion transport distance and increasing the contact area between the electrolyte and the CoP nanoparticles. Moreover, the conductive carbon substrate provides fast electron transfer pathways by forming an integrated conductive network, which further ensures fast HER kinetics. As a result, the CoP/PCNF composites exhibit low onset-potentials (-20, -91, and -84 mV in 0.5 M H2SO4, 1 M PBS, and 1 M KOH, respectively). These findings show that CoP/PCNF composites are promising self-supporting and high-performance all-pH range HER catalysts.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Carbon fibers</subject><subject>Carbon sources</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Condensed Matter Physics</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Electron transfer</subject><subject>Hydrogen evolution reactions</subject><subject>Ion transport</subject><subject>Mass transport</subject><subject>Materials Science</subject><subject>Migration</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>pH effects</subject><subject>Phosphides</subject><subject>Reaction kinetics</subject><subject>Research Article</subject><subject>Substrates</subject><subject>Sulfuric acid</subject><subject>警察;多孔;莲花;进化;碳;抛锚;氢;运输距离</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UE1PwzAMrRBIjMEP4BbBORAnadMe0QQMaRIcdo_SNF07StMlKbB_T8YG3LAs2bLfh_SS5BLIDRAibj1QKjgmIDAIDvjzKJlAUeSYxDr-2YHy0-TM-zUhGQWeT5JxYcPokbM24K59NWiwzsaDVq60PepVb-u2NA6pXjfWmQp9tKFBM_vy_RuUC63ujEcqdtfhYY6abeXsyvTIvNtuDG2UMZ3RwVmtguq2Pvjz5KRWnTcXhzlNlg_3y9kcL54fn2Z3C6wZZwFDLlKeV6widanTosg0pxVlwEBnqcoY0DwvmIJclUKXKdHAioyAhpwzRhWbJtd72cHZzWh8kGs7uj46SkoIcMEILSIK9ijtrPfO1HJw7ZtyWwlE7sKV-3BlDFfuwpWfkUP3HB-x_cq4P-X_SFcHo8b2q03k_TplgouUCMrZF3Q2iXs</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Lu, Hengyi</creator><creator>Fan, Wei</creator><creator>Huang, Yunpeng</creator><creator>Liu, Tianxi</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180301</creationdate><title>Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts</title><author>Lu, Hengyi ; Fan, Wei ; Huang, Yunpeng ; Liu, Tianxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-187548d3d0fbc5996c42d23131c65a63128893a18ab7cb50c139601c184332a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Carbon fibers</topic><topic>Carbon sources</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Condensed Matter Physics</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Electron transfer</topic><topic>Hydrogen evolution reactions</topic><topic>Ion transport</topic><topic>Mass transport</topic><topic>Materials Science</topic><topic>Migration</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>pH effects</topic><topic>Phosphides</topic><topic>Reaction kinetics</topic><topic>Research Article</topic><topic>Substrates</topic><topic>Sulfuric acid</topic><topic>警察;多孔;莲花;进化;碳;抛锚;氢;运输距离</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hengyi</creatorcontrib><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Huang, Yunpeng</creatorcontrib><creatorcontrib>Liu, Tianxi</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Hengyi</au><au>Fan, Wei</au><au>Huang, Yunpeng</au><au>Liu, Tianxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>11</volume><issue>3</issue><spage>1274</spage><epage>1284</epage><pages>1274-1284</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>The development of highly active and cost-effective hydrogen evolution reaction (HER) catalysts is of vital importance to addressing global energy issues. Here, a three-dimensional interconnected porous carbon nanofiber (PCNF) membrane has been developed and utilized as a support for active cobalt phosphide (COP) nanoparticles. This rationally designed self-supported HER catalyst has a lotus root-like multichannel structure, which provides several intrinsic advantages over conventional CNFs. The longitudinal channels can store the electrolyte and ensure fast ion and mass transport within the catalysts. Additionally, mesopores on the outer and inner carbon walls enhance ion and mass migration of the electrolyte to HER active CoP nanoparticles, thus shortening the ion transport distance and increasing the contact area between the electrolyte and the CoP nanoparticles. Moreover, the conductive carbon substrate provides fast electron transfer pathways by forming an integrated conductive network, which further ensures fast HER kinetics. As a result, the CoP/PCNF composites exhibit low onset-potentials (-20, -91, and -84 mV in 0.5 M H2SO4, 1 M PBS, and 1 M KOH, respectively). These findings show that CoP/PCNF composites are promising self-supporting and high-performance all-pH range HER catalysts.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1741-x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2018-03, Vol.11 (3), p.1274-1284 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2001473029 |
source | SpringerLink Journals - AutoHoldings |
subjects | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Carbon Carbon fibers Carbon sources Catalysis Catalysts Chemistry and Materials Science Cobalt Condensed Matter Physics Electrocatalysts Electrolytes Electron transfer Hydrogen evolution reactions Ion transport Mass transport Materials Science Migration Nanofibers Nanoparticles Nanotechnology pH effects Phosphides Reaction kinetics Research Article Substrates Sulfuric acid 警察 多孔 莲花 进化 碳 抛锚 氢 运输距离 |
title | Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lotus%20root-like%20porous%20carbon%20nanofiber%20anchored%20with%20CoP%20nanoparticles%20as%20all-pH%20hydrogen%20evolution%20electrocatalysts&rft.jtitle=Nano%20research&rft.au=Lu,%20Hengyi&rft.date=2018-03-01&rft.volume=11&rft.issue=3&rft.spage=1274&rft.epage=1284&rft.pages=1274-1284&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1741-x&rft_dat=%3Cproquest_cross%3E2001473029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001473029&rft_id=info:pmid/&rft_cqvip_id=674750724&rfr_iscdi=true |