NaFeTiO4 nanorod/multi-walled carbon nanotubes composite as an anode material for sodium-ion batteries with high performances in both half and full cells
NaFeTiO4 nanorods of high yields (with diameters in the range of 30-50 nm and lengths of up to 1-5 μm) were synthesized by a facile sol-gel method and were utilized as an anode material for sodium-ion batteries for the first time. The obtained NaFeTiO4 nanorods exhibit a high initial discharge capac...
Gespeichert in:
Veröffentlicht in: | Nano research 2017-10, Vol.10 (10), p.3585-3595 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3595 |
---|---|
container_issue | 10 |
container_start_page | 3585 |
container_title | Nano research |
container_volume | 10 |
creator | Hou, Xuan Li, Chuanchuan Xu, Huayun Xu, Liqiang |
description | NaFeTiO4 nanorods of high yields (with diameters in the range of 30-50 nm and lengths of up to 1-5 μm) were synthesized by a facile sol-gel method and were utilized as an anode material for sodium-ion batteries for the first time. The obtained NaFeTiO4 nanorods exhibit a high initial discharge capacity of 294 mA·h·g^-1 at 0.2 C (1 C = 177 mA·g^-1), and remain at 115 mA·h·g^-1 after 50 cycles. Furthermore, multi-walled carbon nanotubes (MWCNTs) were mechanically milled with the pristine material to obtain NaFeTiO4/MWCNTs. The NaFeTiO4/MWCNTs electrode exhibits a significantly improved electrochemical performance with a stable discharge capacity of 150 mA·h·g^-1 at 0.2 C after 50 cycles, and remains at 125 mA·h·g^-1 at 0.5 C after 420 cycles. The NaFeTiO4/MWCNTs//Na3V2(PO4)3/C full cell was assembled for the first time; it displays a discharge capacity of 70 mA·h·g^-1 after 50 cycles at 0.05 C, indicating its excellent performances. X-ray photoelectron spectroscopy, ex situ X-ray diffraction, and Raman measurements were performed to investigate the initial electrochemical mechanisms of the obtained NaFeTiO4/MWCNTs. |
doi_str_mv | 10.1007/s12274-017-1569-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001468706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673128251</cqvip_id><sourcerecordid>2001468706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-73998206cf149f7fdb4886223472ae15b7d1227ac8a458d0025efcba7dced4a33</originalsourceid><addsrcrecordid>eNp9UclOxCAYbowmrg_gjegZBygtnaOZuCUTveiZ_GWZwdAyA22Mj-LbSh2Xm4SEP3xb4CuKc0quKCFilihjgmNCBaZVPcd8rzii83mDSV77PzNl_LA4TumVkJpR3hwVH49wa57dE0c99CEGPetGPzj8Bt4bjRTENvRf2DC2JiEVuk1IbjAIEoI-76AN6mAw0YFHNkSUgnZjh13WtTBMQNa9uWGN1m61RhsTM6uDXuVrlzlhQsDb7KWRHb1HynifTosDCz6Zs-_zpHi5vXle3OPl093D4nqJVcnLAYsyv4yRWlnK51ZY3fKmqRkruWBgaNUKPX0NqAZ41WhCWGWsakFoZTSHsjwpLne-mxi2o0mDfA1j7HOkZIRQXjeC1JlFdywVQ0rRWLmJroP4LimRUwNy14DMDcipAcmzhu00KXP7lYl_zv-JLr6D1qFfbbPuN6kWJWUNq2j5CaiylpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001468706</pqid></control><display><type>article</type><title>NaFeTiO4 nanorod/multi-walled carbon nanotubes composite as an anode material for sodium-ion batteries with high performances in both half and full cells</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hou, Xuan ; Li, Chuanchuan ; Xu, Huayun ; Xu, Liqiang</creator><creatorcontrib>Hou, Xuan ; Li, Chuanchuan ; Xu, Huayun ; Xu, Liqiang</creatorcontrib><description>NaFeTiO4 nanorods of high yields (with diameters in the range of 30-50 nm and lengths of up to 1-5 μm) were synthesized by a facile sol-gel method and were utilized as an anode material for sodium-ion batteries for the first time. The obtained NaFeTiO4 nanorods exhibit a high initial discharge capacity of 294 mA·h·g^-1 at 0.2 C (1 C = 177 mA·g^-1), and remain at 115 mA·h·g^-1 after 50 cycles. Furthermore, multi-walled carbon nanotubes (MWCNTs) were mechanically milled with the pristine material to obtain NaFeTiO4/MWCNTs. The NaFeTiO4/MWCNTs electrode exhibits a significantly improved electrochemical performance with a stable discharge capacity of 150 mA·h·g^-1 at 0.2 C after 50 cycles, and remains at 125 mA·h·g^-1 at 0.5 C after 420 cycles. The NaFeTiO4/MWCNTs//Na3V2(PO4)3/C full cell was assembled for the first time; it displays a discharge capacity of 70 mA·h·g^-1 after 50 cycles at 0.05 C, indicating its excellent performances. X-ray photoelectron spectroscopy, ex situ X-ray diffraction, and Raman measurements were performed to investigate the initial electrochemical mechanisms of the obtained NaFeTiO4/MWCNTs.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-017-1569-4</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Anodes ; Atomic/Molecular Structure and Spectra ; Batteries ; Biomedicine ; Biotechnology ; Carbon cycle ; Chemistry and Materials Science ; Composite materials ; Condensed Matter Physics ; Discharge ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Materials Science ; Multi wall carbon nanotubes ; Nanorods ; Nanotechnology ; Nanotubes ; Photoelectron spectroscopy ; Rechargeable batteries ; Research Article ; Sodium ; Sodium-ion batteries ; Sol-gel processes ; X-ray diffraction ; X射线光电子能谱 ; 全细胞 ; 多壁碳纳米管 ; 性能稳定 ; 正极材料 ; 碳纳米管复合材料 ; 纳米棒 ; 钠离子电池</subject><ispartof>Nano research, 2017-10, Vol.10 (10), p.3585-3595</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany 2017</rights><rights>Nano Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-73998206cf149f7fdb4886223472ae15b7d1227ac8a458d0025efcba7dced4a33</citedby><cites>FETCH-LOGICAL-c343t-73998206cf149f7fdb4886223472ae15b7d1227ac8a458d0025efcba7dced4a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-017-1569-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-017-1569-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hou, Xuan</creatorcontrib><creatorcontrib>Li, Chuanchuan</creatorcontrib><creatorcontrib>Xu, Huayun</creatorcontrib><creatorcontrib>Xu, Liqiang</creatorcontrib><title>NaFeTiO4 nanorod/multi-walled carbon nanotubes composite as an anode material for sodium-ion batteries with high performances in both half and full cells</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>NaFeTiO4 nanorods of high yields (with diameters in the range of 30-50 nm and lengths of up to 1-5 μm) were synthesized by a facile sol-gel method and were utilized as an anode material for sodium-ion batteries for the first time. The obtained NaFeTiO4 nanorods exhibit a high initial discharge capacity of 294 mA·h·g^-1 at 0.2 C (1 C = 177 mA·g^-1), and remain at 115 mA·h·g^-1 after 50 cycles. Furthermore, multi-walled carbon nanotubes (MWCNTs) were mechanically milled with the pristine material to obtain NaFeTiO4/MWCNTs. The NaFeTiO4/MWCNTs electrode exhibits a significantly improved electrochemical performance with a stable discharge capacity of 150 mA·h·g^-1 at 0.2 C after 50 cycles, and remains at 125 mA·h·g^-1 at 0.5 C after 420 cycles. The NaFeTiO4/MWCNTs//Na3V2(PO4)3/C full cell was assembled for the first time; it displays a discharge capacity of 70 mA·h·g^-1 after 50 cycles at 0.05 C, indicating its excellent performances. X-ray photoelectron spectroscopy, ex situ X-ray diffraction, and Raman measurements were performed to investigate the initial electrochemical mechanisms of the obtained NaFeTiO4/MWCNTs.</description><subject>Anodes</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Batteries</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon cycle</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Condensed Matter Physics</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Materials Science</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanorods</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Photoelectron spectroscopy</subject><subject>Rechargeable batteries</subject><subject>Research Article</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Sol-gel processes</subject><subject>X-ray diffraction</subject><subject>X射线光电子能谱</subject><subject>全细胞</subject><subject>多壁碳纳米管</subject><subject>性能稳定</subject><subject>正极材料</subject><subject>碳纳米管复合材料</subject><subject>纳米棒</subject><subject>钠离子电池</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UclOxCAYbowmrg_gjegZBygtnaOZuCUTveiZ_GWZwdAyA22Mj-LbSh2Xm4SEP3xb4CuKc0quKCFilihjgmNCBaZVPcd8rzii83mDSV77PzNl_LA4TumVkJpR3hwVH49wa57dE0c99CEGPetGPzj8Bt4bjRTENvRf2DC2JiEVuk1IbjAIEoI-76AN6mAw0YFHNkSUgnZjh13WtTBMQNa9uWGN1m61RhsTM6uDXuVrlzlhQsDb7KWRHb1HynifTosDCz6Zs-_zpHi5vXle3OPl093D4nqJVcnLAYsyv4yRWlnK51ZY3fKmqRkruWBgaNUKPX0NqAZ41WhCWGWsakFoZTSHsjwpLne-mxi2o0mDfA1j7HOkZIRQXjeC1JlFdywVQ0rRWLmJroP4LimRUwNy14DMDcipAcmzhu00KXP7lYl_zv-JLr6D1qFfbbPuN6kWJWUNq2j5CaiylpU</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Hou, Xuan</creator><creator>Li, Chuanchuan</creator><creator>Xu, Huayun</creator><creator>Xu, Liqiang</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20171001</creationdate><title>NaFeTiO4 nanorod/multi-walled carbon nanotubes composite as an anode material for sodium-ion batteries with high performances in both half and full cells</title><author>Hou, Xuan ; Li, Chuanchuan ; Xu, Huayun ; Xu, Liqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-73998206cf149f7fdb4886223472ae15b7d1227ac8a458d0025efcba7dced4a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anodes</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Batteries</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon cycle</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Condensed Matter Physics</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Materials Science</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanorods</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Photoelectron spectroscopy</topic><topic>Rechargeable batteries</topic><topic>Research Article</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Sol-gel processes</topic><topic>X-ray diffraction</topic><topic>X射线光电子能谱</topic><topic>全细胞</topic><topic>多壁碳纳米管</topic><topic>性能稳定</topic><topic>正极材料</topic><topic>碳纳米管复合材料</topic><topic>纳米棒</topic><topic>钠离子电池</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Xuan</creatorcontrib><creatorcontrib>Li, Chuanchuan</creatorcontrib><creatorcontrib>Xu, Huayun</creatorcontrib><creatorcontrib>Xu, Liqiang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Xuan</au><au>Li, Chuanchuan</au><au>Xu, Huayun</au><au>Xu, Liqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NaFeTiO4 nanorod/multi-walled carbon nanotubes composite as an anode material for sodium-ion batteries with high performances in both half and full cells</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>10</volume><issue>10</issue><spage>3585</spage><epage>3595</epage><pages>3585-3595</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>NaFeTiO4 nanorods of high yields (with diameters in the range of 30-50 nm and lengths of up to 1-5 μm) were synthesized by a facile sol-gel method and were utilized as an anode material for sodium-ion batteries for the first time. The obtained NaFeTiO4 nanorods exhibit a high initial discharge capacity of 294 mA·h·g^-1 at 0.2 C (1 C = 177 mA·g^-1), and remain at 115 mA·h·g^-1 after 50 cycles. Furthermore, multi-walled carbon nanotubes (MWCNTs) were mechanically milled with the pristine material to obtain NaFeTiO4/MWCNTs. The NaFeTiO4/MWCNTs electrode exhibits a significantly improved electrochemical performance with a stable discharge capacity of 150 mA·h·g^-1 at 0.2 C after 50 cycles, and remains at 125 mA·h·g^-1 at 0.5 C after 420 cycles. The NaFeTiO4/MWCNTs//Na3V2(PO4)3/C full cell was assembled for the first time; it displays a discharge capacity of 70 mA·h·g^-1 after 50 cycles at 0.05 C, indicating its excellent performances. X-ray photoelectron spectroscopy, ex situ X-ray diffraction, and Raman measurements were performed to investigate the initial electrochemical mechanisms of the obtained NaFeTiO4/MWCNTs.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-017-1569-4</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2017-10, Vol.10 (10), p.3585-3595 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2001468706 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anodes Atomic/Molecular Structure and Spectra Batteries Biomedicine Biotechnology Carbon cycle Chemistry and Materials Science Composite materials Condensed Matter Physics Discharge Electrochemical analysis Electrochemistry Electrode materials Materials Science Multi wall carbon nanotubes Nanorods Nanotechnology Nanotubes Photoelectron spectroscopy Rechargeable batteries Research Article Sodium Sodium-ion batteries Sol-gel processes X-ray diffraction X射线光电子能谱 全细胞 多壁碳纳米管 性能稳定 正极材料 碳纳米管复合材料 纳米棒 钠离子电池 |
title | NaFeTiO4 nanorod/multi-walled carbon nanotubes composite as an anode material for sodium-ion batteries with high performances in both half and full cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NaFeTiO4%20nanorod/multi-walled%20carbon%20nanotubes%20composite%20as%20an%20anode%20material%20for%20sodium-ion%20batteries%20with%20high%20performances%20in%20both%20half%20and%20full%20cells&rft.jtitle=Nano%20research&rft.au=Hou,%20Xuan&rft.date=2017-10-01&rft.volume=10&rft.issue=10&rft.spage=3585&rft.epage=3595&rft.pages=3585-3595&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-017-1569-4&rft_dat=%3Cproquest_cross%3E2001468706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001468706&rft_id=info:pmid/&rft_cqvip_id=673128251&rfr_iscdi=true |