Disaster response aided by tweet classification with a domain adaptation approach

Social media platforms such as Twitter provide valuable information for aiding disaster response during emergency events. Machine learning could be used to identify such information. However, supervised learning algorithms rely on labelled data, which is not readily available for an emerging target...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of contingencies and crisis management 2018-03, Vol.26 (1), p.16-27
Hauptverfasser: Li, Hongmin, Caragea, Doina, Caragea, Cornelia, Herndon, Nic
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 1
container_start_page 16
container_title Journal of contingencies and crisis management
container_volume 26
creator Li, Hongmin
Caragea, Doina
Caragea, Cornelia
Herndon, Nic
description Social media platforms such as Twitter provide valuable information for aiding disaster response during emergency events. Machine learning could be used to identify such information. However, supervised learning algorithms rely on labelled data, which is not readily available for an emerging target disaster. While labelled data might be available for a prior source disaster, supervised classifiers learned only from the source disaster may not perform well on the target disaster, as each event has unique characteristics (e.g., type, location, and culture) and may cause different social media responses. To address this limitation, we propose to use a domain adaptation approach, which learns classifiers from unlabelled target data, in addition to source labelled data. Our approach uses the Naïve Bayes classifier, together with an iterative Self‐Training strategy. Experimental results on the task of identifying tweets relevant to a disaster of interest show that the domain adaptation classifiers are better as compared to the supervised classifiers learned only from labelled source data.
doi_str_mv 10.1111/1468-5973.12194
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001367240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001367240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-76f1ed4e4aea3fe71647609e296f2487e155805477292a4cc46fa01d4fd2033c3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKtnrwHP2ybZbLJ7lFWrUhFBz2HMTmhKu7smKaX_3q0rXp3LwLz35sFHyDVnMz7MnEtVZkWl8xkXvJInZPJ3OSUTVimVsVJX5-QixjVjrCjLckLe7nyEmDDQgLHv2ogUfIMN_TzQtEdM1G4gRu-8heS7lu59WlGgTbcF31JooE-jAH0fOrCrS3LmYBPx6ndPycfD_Xv9mC1fF0_17TKzeaFlppXj2EiUgJA71FxJrViFolJOyFIjL4qSFVJrUQmQ1krlgPFGukawPLf5lNyMf4farx3GZNbdLrRDpRGM8VxpIdngmo8uG7oYAzrTB7-FcDCcmSM3c6RkjpTMD7chocbE3m_w8J_dPNf1yxj8Bk1qbxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001367240</pqid></control><display><type>article</type><title>Disaster response aided by tweet classification with a domain adaptation approach</title><source>PAIS Index</source><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Li, Hongmin ; Caragea, Doina ; Caragea, Cornelia ; Herndon, Nic</creator><creatorcontrib>Li, Hongmin ; Caragea, Doina ; Caragea, Cornelia ; Herndon, Nic</creatorcontrib><description>Social media platforms such as Twitter provide valuable information for aiding disaster response during emergency events. Machine learning could be used to identify such information. However, supervised learning algorithms rely on labelled data, which is not readily available for an emerging target disaster. While labelled data might be available for a prior source disaster, supervised classifiers learned only from the source disaster may not perform well on the target disaster, as each event has unique characteristics (e.g., type, location, and culture) and may cause different social media responses. To address this limitation, we propose to use a domain adaptation approach, which learns classifiers from unlabelled target data, in addition to source labelled data. Our approach uses the Naïve Bayes classifier, together with an iterative Self‐Training strategy. Experimental results on the task of identifying tweets relevant to a disaster of interest show that the domain adaptation classifiers are better as compared to the supervised classifiers learned only from labelled source data.</description><identifier>ISSN: 0966-0879</identifier><identifier>EISSN: 1468-5973</identifier><identifier>DOI: 10.1111/1468-5973.12194</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Adaptation ; Classification ; Contingency planning ; disaster response ; domain adaptation ; Emergency preparedness ; Management of crises ; Mass media effects ; Social media ; Social networks ; Training ; Twitter</subject><ispartof>Journal of contingencies and crisis management, 2018-03, Vol.26 (1), p.16-27</ispartof><rights>2017 John Wiley &amp; Sons Ltd</rights><rights>2018 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-76f1ed4e4aea3fe71647609e296f2487e155805477292a4cc46fa01d4fd2033c3</citedby><cites>FETCH-LOGICAL-c3574-76f1ed4e4aea3fe71647609e296f2487e155805477292a4cc46fa01d4fd2033c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1468-5973.12194$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1468-5973.12194$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27866,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Hongmin</creatorcontrib><creatorcontrib>Caragea, Doina</creatorcontrib><creatorcontrib>Caragea, Cornelia</creatorcontrib><creatorcontrib>Herndon, Nic</creatorcontrib><title>Disaster response aided by tweet classification with a domain adaptation approach</title><title>Journal of contingencies and crisis management</title><description>Social media platforms such as Twitter provide valuable information for aiding disaster response during emergency events. Machine learning could be used to identify such information. However, supervised learning algorithms rely on labelled data, which is not readily available for an emerging target disaster. While labelled data might be available for a prior source disaster, supervised classifiers learned only from the source disaster may not perform well on the target disaster, as each event has unique characteristics (e.g., type, location, and culture) and may cause different social media responses. To address this limitation, we propose to use a domain adaptation approach, which learns classifiers from unlabelled target data, in addition to source labelled data. Our approach uses the Naïve Bayes classifier, together with an iterative Self‐Training strategy. Experimental results on the task of identifying tweets relevant to a disaster of interest show that the domain adaptation classifiers are better as compared to the supervised classifiers learned only from labelled source data.</description><subject>Adaptation</subject><subject>Classification</subject><subject>Contingency planning</subject><subject>disaster response</subject><subject>domain adaptation</subject><subject>Emergency preparedness</subject><subject>Management of crises</subject><subject>Mass media effects</subject><subject>Social media</subject><subject>Social networks</subject><subject>Training</subject><subject>Twitter</subject><issn>0966-0879</issn><issn>1468-5973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNqFkEFLAzEQhYMoWKtnrwHP2ybZbLJ7lFWrUhFBz2HMTmhKu7smKaX_3q0rXp3LwLz35sFHyDVnMz7MnEtVZkWl8xkXvJInZPJ3OSUTVimVsVJX5-QixjVjrCjLckLe7nyEmDDQgLHv2ogUfIMN_TzQtEdM1G4gRu-8heS7lu59WlGgTbcF31JooE-jAH0fOrCrS3LmYBPx6ndPycfD_Xv9mC1fF0_17TKzeaFlppXj2EiUgJA71FxJrViFolJOyFIjL4qSFVJrUQmQ1krlgPFGukawPLf5lNyMf4farx3GZNbdLrRDpRGM8VxpIdngmo8uG7oYAzrTB7-FcDCcmSM3c6RkjpTMD7chocbE3m_w8J_dPNf1yxj8Bk1qbxg</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Li, Hongmin</creator><creator>Caragea, Doina</creator><creator>Caragea, Cornelia</creator><creator>Herndon, Nic</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TQ</scope><scope>8BJ</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201803</creationdate><title>Disaster response aided by tweet classification with a domain adaptation approach</title><author>Li, Hongmin ; Caragea, Doina ; Caragea, Cornelia ; Herndon, Nic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-76f1ed4e4aea3fe71647609e296f2487e155805477292a4cc46fa01d4fd2033c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation</topic><topic>Classification</topic><topic>Contingency planning</topic><topic>disaster response</topic><topic>domain adaptation</topic><topic>Emergency preparedness</topic><topic>Management of crises</topic><topic>Mass media effects</topic><topic>Social media</topic><topic>Social networks</topic><topic>Training</topic><topic>Twitter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongmin</creatorcontrib><creatorcontrib>Caragea, Doina</creatorcontrib><creatorcontrib>Caragea, Cornelia</creatorcontrib><creatorcontrib>Herndon, Nic</creatorcontrib><collection>CrossRef</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of contingencies and crisis management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongmin</au><au>Caragea, Doina</au><au>Caragea, Cornelia</au><au>Herndon, Nic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disaster response aided by tweet classification with a domain adaptation approach</atitle><jtitle>Journal of contingencies and crisis management</jtitle><date>2018-03</date><risdate>2018</risdate><volume>26</volume><issue>1</issue><spage>16</spage><epage>27</epage><pages>16-27</pages><issn>0966-0879</issn><eissn>1468-5973</eissn><abstract>Social media platforms such as Twitter provide valuable information for aiding disaster response during emergency events. Machine learning could be used to identify such information. However, supervised learning algorithms rely on labelled data, which is not readily available for an emerging target disaster. While labelled data might be available for a prior source disaster, supervised classifiers learned only from the source disaster may not perform well on the target disaster, as each event has unique characteristics (e.g., type, location, and culture) and may cause different social media responses. To address this limitation, we propose to use a domain adaptation approach, which learns classifiers from unlabelled target data, in addition to source labelled data. Our approach uses the Naïve Bayes classifier, together with an iterative Self‐Training strategy. Experimental results on the task of identifying tweets relevant to a disaster of interest show that the domain adaptation classifiers are better as compared to the supervised classifiers learned only from labelled source data.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/1468-5973.12194</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0966-0879
ispartof Journal of contingencies and crisis management, 2018-03, Vol.26 (1), p.16-27
issn 0966-0879
1468-5973
language eng
recordid cdi_proquest_journals_2001367240
source PAIS Index; EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects Adaptation
Classification
Contingency planning
disaster response
domain adaptation
Emergency preparedness
Management of crises
Mass media effects
Social media
Social networks
Training
Twitter
title Disaster response aided by tweet classification with a domain adaptation approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disaster%20response%20aided%20by%20tweet%20classification%20with%20a%20domain%20adaptation%20approach&rft.jtitle=Journal%20of%20contingencies%20and%20crisis%20management&rft.au=Li,%20Hongmin&rft.date=2018-03&rft.volume=26&rft.issue=1&rft.spage=16&rft.epage=27&rft.pages=16-27&rft.issn=0966-0879&rft.eissn=1468-5973&rft_id=info:doi/10.1111/1468-5973.12194&rft_dat=%3Cproquest_cross%3E2001367240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001367240&rft_id=info:pmid/&rfr_iscdi=true