Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition
We analyze an optimal boundary control problem for heat convection equations in a three-dimensional domain, with mixed boundary conditions. We prove the existence of optimal solutions, by considering boundary controls for the velocity vector and the temperature. The analyzed optimal control problem...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2018 |
creator | Mallea-Zepeda, Exequiel Valero, Elvis Lenes, Eber |
description | We analyze an optimal boundary control problem for heat convection equations in a three-dimensional domain, with mixed boundary conditions. We prove the existence of optimal solutions, by considering boundary controls for the velocity vector and the temperature. The analyzed optimal control problem includes the minimization of a Lebesgue norm between the velocity and some desired field, as well as the temperature and some desired temperature. By using the Lagrange multipliers theorem we derive an optimality system. We also give a second-order sufficient condition. |
doi_str_mv | 10.1155/2018/7959761 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2000987935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000987935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-dbb8a6f9a8d1b943fdd4931c1127bd9baccfb17f72651f7f72ddf956fd8eb7143</originalsourceid><addsrcrecordid>eNqFkM9LwzAcxYMoOKc3zxLwqHX5pk3THHVMJwwUpuCtJE3COrpmS9sN_3tTOtCbp_fgffj-eAhdA3kAYGxCCWQTLpjgKZygEbA0jhgk_DR4QpMIaPx1ji6aZk0IBQbZCC2fXFdr6b_x1NWtdxV-905VZoOt83huZNsHe1O0pavxbNfJ3jT4ULYrvKzKLf47QJd9eonOrKwac3XUMfp8nn1M59Hi7eV1-riIijglbaSVymRqhcw0KJHEVutExFAAUK60ULIorAJuOU0Z2F61toKlVmdGcUjiMbod5m6923WmafO163wdVuaUECIyLmIWqPuBKrxrGm9svvXlJhycA8n72vK-tvxYW8DvBnxVhrcO5X_0zUCbwBgrf2lKBAn7fwASZ3eB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000987935</pqid></control><display><type>article</type><title>Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition</title><source>Wiley-Blackwell Open Access Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Mallea-Zepeda, Exequiel ; Valero, Elvis ; Lenes, Eber</creator><contributor>Yuming, Qin ; Qin Yuming</contributor><creatorcontrib>Mallea-Zepeda, Exequiel ; Valero, Elvis ; Lenes, Eber ; Yuming, Qin ; Qin Yuming</creatorcontrib><description>We analyze an optimal boundary control problem for heat convection equations in a three-dimensional domain, with mixed boundary conditions. We prove the existence of optimal solutions, by considering boundary controls for the velocity vector and the temperature. The analyzed optimal control problem includes the minimization of a Lebesgue norm between the velocity and some desired field, as well as the temperature and some desired temperature. By using the Lagrange multipliers theorem we derive an optimality system. We also give a second-order sufficient condition.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/7959761</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Applied mathematics ; Boundary conditions ; Boundary control ; Heat transfer ; Lagrange multiplier ; Mathematical analysis ; Mathematical problems ; Mathematical programming ; Numerical analysis ; Optimal control ; Optimization</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-14</ispartof><rights>Copyright © 2018 Exequiel Mallea-Zepeda et al.</rights><rights>Copyright © 2018 Exequiel Mallea-Zepeda et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-dbb8a6f9a8d1b943fdd4931c1127bd9baccfb17f72651f7f72ddf956fd8eb7143</citedby><cites>FETCH-LOGICAL-c360t-dbb8a6f9a8d1b943fdd4931c1127bd9baccfb17f72651f7f72ddf956fd8eb7143</cites><orcidid>0000-0002-7726-2362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Yuming, Qin</contributor><contributor>Qin Yuming</contributor><creatorcontrib>Mallea-Zepeda, Exequiel</creatorcontrib><creatorcontrib>Valero, Elvis</creatorcontrib><creatorcontrib>Lenes, Eber</creatorcontrib><title>Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition</title><title>Mathematical problems in engineering</title><description>We analyze an optimal boundary control problem for heat convection equations in a three-dimensional domain, with mixed boundary conditions. We prove the existence of optimal solutions, by considering boundary controls for the velocity vector and the temperature. The analyzed optimal control problem includes the minimization of a Lebesgue norm between the velocity and some desired field, as well as the temperature and some desired temperature. By using the Lagrange multipliers theorem we derive an optimality system. We also give a second-order sufficient condition.</description><subject>Applied mathematics</subject><subject>Boundary conditions</subject><subject>Boundary control</subject><subject>Heat transfer</subject><subject>Lagrange multiplier</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>Mathematical programming</subject><subject>Numerical analysis</subject><subject>Optimal control</subject><subject>Optimization</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkM9LwzAcxYMoOKc3zxLwqHX5pk3THHVMJwwUpuCtJE3COrpmS9sN_3tTOtCbp_fgffj-eAhdA3kAYGxCCWQTLpjgKZygEbA0jhgk_DR4QpMIaPx1ji6aZk0IBQbZCC2fXFdr6b_x1NWtdxV-905VZoOt83huZNsHe1O0pavxbNfJ3jT4ULYrvKzKLf47QJd9eonOrKwac3XUMfp8nn1M59Hi7eV1-riIijglbaSVymRqhcw0KJHEVutExFAAUK60ULIorAJuOU0Z2F61toKlVmdGcUjiMbod5m6923WmafO163wdVuaUECIyLmIWqPuBKrxrGm9svvXlJhycA8n72vK-tvxYW8DvBnxVhrcO5X_0zUCbwBgrf2lKBAn7fwASZ3eB</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Mallea-Zepeda, Exequiel</creator><creator>Valero, Elvis</creator><creator>Lenes, Eber</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7726-2362</orcidid></search><sort><creationdate>20180101</creationdate><title>Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition</title><author>Mallea-Zepeda, Exequiel ; Valero, Elvis ; Lenes, Eber</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-dbb8a6f9a8d1b943fdd4931c1127bd9baccfb17f72651f7f72ddf956fd8eb7143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied mathematics</topic><topic>Boundary conditions</topic><topic>Boundary control</topic><topic>Heat transfer</topic><topic>Lagrange multiplier</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>Mathematical programming</topic><topic>Numerical analysis</topic><topic>Optimal control</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mallea-Zepeda, Exequiel</creatorcontrib><creatorcontrib>Valero, Elvis</creatorcontrib><creatorcontrib>Lenes, Eber</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mallea-Zepeda, Exequiel</au><au>Valero, Elvis</au><au>Lenes, Eber</au><au>Yuming, Qin</au><au>Qin Yuming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>We analyze an optimal boundary control problem for heat convection equations in a three-dimensional domain, with mixed boundary conditions. We prove the existence of optimal solutions, by considering boundary controls for the velocity vector and the temperature. The analyzed optimal control problem includes the minimization of a Lebesgue norm between the velocity and some desired field, as well as the temperature and some desired temperature. By using the Lagrange multipliers theorem we derive an optimality system. We also give a second-order sufficient condition.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/7959761</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7726-2362</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-14 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2000987935 |
source | Wiley-Blackwell Open Access Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Applied mathematics Boundary conditions Boundary control Heat transfer Lagrange multiplier Mathematical analysis Mathematical problems Mathematical programming Numerical analysis Optimal control Optimization |
title | Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20Control%20Problem%20for%20Heat%20Convection%20Equations%20with%20Slip%20Boundary%20Condition&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Mallea-Zepeda,%20Exequiel&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/7959761&rft_dat=%3Cproquest_cross%3E2000987935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000987935&rft_id=info:pmid/&rfr_iscdi=true |