Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition

We analyze an optimal boundary control problem for heat convection equations in a three-dimensional domain, with mixed boundary conditions. We prove the existence of optimal solutions, by considering boundary controls for the velocity vector and the temperature. The analyzed optimal control problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-14
Hauptverfasser: Mallea-Zepeda, Exequiel, Valero, Elvis, Lenes, Eber
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 2018
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2018
creator Mallea-Zepeda, Exequiel
Valero, Elvis
Lenes, Eber
description We analyze an optimal boundary control problem for heat convection equations in a three-dimensional domain, with mixed boundary conditions. We prove the existence of optimal solutions, by considering boundary controls for the velocity vector and the temperature. The analyzed optimal control problem includes the minimization of a Lebesgue norm between the velocity and some desired field, as well as the temperature and some desired temperature. By using the Lagrange multipliers theorem we derive an optimality system. We also give a second-order sufficient condition.
doi_str_mv 10.1155/2018/7959761
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2000987935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000987935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-dbb8a6f9a8d1b943fdd4931c1127bd9baccfb17f72651f7f72ddf956fd8eb7143</originalsourceid><addsrcrecordid>eNqFkM9LwzAcxYMoOKc3zxLwqHX5pk3THHVMJwwUpuCtJE3COrpmS9sN_3tTOtCbp_fgffj-eAhdA3kAYGxCCWQTLpjgKZygEbA0jhgk_DR4QpMIaPx1ji6aZk0IBQbZCC2fXFdr6b_x1NWtdxV-905VZoOt83huZNsHe1O0pavxbNfJ3jT4ULYrvKzKLf47QJd9eonOrKwac3XUMfp8nn1M59Hi7eV1-riIijglbaSVymRqhcw0KJHEVutExFAAUK60ULIorAJuOU0Z2F61toKlVmdGcUjiMbod5m6923WmafO163wdVuaUECIyLmIWqPuBKrxrGm9svvXlJhycA8n72vK-tvxYW8DvBnxVhrcO5X_0zUCbwBgrf2lKBAn7fwASZ3eB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000987935</pqid></control><display><type>article</type><title>Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition</title><source>Wiley-Blackwell Open Access Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Mallea-Zepeda, Exequiel ; Valero, Elvis ; Lenes, Eber</creator><contributor>Yuming, Qin ; Qin Yuming</contributor><creatorcontrib>Mallea-Zepeda, Exequiel ; Valero, Elvis ; Lenes, Eber ; Yuming, Qin ; Qin Yuming</creatorcontrib><description>We analyze an optimal boundary control problem for heat convection equations in a three-dimensional domain, with mixed boundary conditions. We prove the existence of optimal solutions, by considering boundary controls for the velocity vector and the temperature. The analyzed optimal control problem includes the minimization of a Lebesgue norm between the velocity and some desired field, as well as the temperature and some desired temperature. By using the Lagrange multipliers theorem we derive an optimality system. We also give a second-order sufficient condition.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/7959761</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Applied mathematics ; Boundary conditions ; Boundary control ; Heat transfer ; Lagrange multiplier ; Mathematical analysis ; Mathematical problems ; Mathematical programming ; Numerical analysis ; Optimal control ; Optimization</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-14</ispartof><rights>Copyright © 2018 Exequiel Mallea-Zepeda et al.</rights><rights>Copyright © 2018 Exequiel Mallea-Zepeda et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-dbb8a6f9a8d1b943fdd4931c1127bd9baccfb17f72651f7f72ddf956fd8eb7143</citedby><cites>FETCH-LOGICAL-c360t-dbb8a6f9a8d1b943fdd4931c1127bd9baccfb17f72651f7f72ddf956fd8eb7143</cites><orcidid>0000-0002-7726-2362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Yuming, Qin</contributor><contributor>Qin Yuming</contributor><creatorcontrib>Mallea-Zepeda, Exequiel</creatorcontrib><creatorcontrib>Valero, Elvis</creatorcontrib><creatorcontrib>Lenes, Eber</creatorcontrib><title>Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition</title><title>Mathematical problems in engineering</title><description>We analyze an optimal boundary control problem for heat convection equations in a three-dimensional domain, with mixed boundary conditions. We prove the existence of optimal solutions, by considering boundary controls for the velocity vector and the temperature. The analyzed optimal control problem includes the minimization of a Lebesgue norm between the velocity and some desired field, as well as the temperature and some desired temperature. By using the Lagrange multipliers theorem we derive an optimality system. We also give a second-order sufficient condition.</description><subject>Applied mathematics</subject><subject>Boundary conditions</subject><subject>Boundary control</subject><subject>Heat transfer</subject><subject>Lagrange multiplier</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>Mathematical programming</subject><subject>Numerical analysis</subject><subject>Optimal control</subject><subject>Optimization</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkM9LwzAcxYMoOKc3zxLwqHX5pk3THHVMJwwUpuCtJE3COrpmS9sN_3tTOtCbp_fgffj-eAhdA3kAYGxCCWQTLpjgKZygEbA0jhgk_DR4QpMIaPx1ji6aZk0IBQbZCC2fXFdr6b_x1NWtdxV-905VZoOt83huZNsHe1O0pavxbNfJ3jT4ULYrvKzKLf47QJd9eonOrKwac3XUMfp8nn1M59Hi7eV1-riIijglbaSVymRqhcw0KJHEVutExFAAUK60ULIorAJuOU0Z2F61toKlVmdGcUjiMbod5m6923WmafO163wdVuaUECIyLmIWqPuBKrxrGm9svvXlJhycA8n72vK-tvxYW8DvBnxVhrcO5X_0zUCbwBgrf2lKBAn7fwASZ3eB</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Mallea-Zepeda, Exequiel</creator><creator>Valero, Elvis</creator><creator>Lenes, Eber</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7726-2362</orcidid></search><sort><creationdate>20180101</creationdate><title>Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition</title><author>Mallea-Zepeda, Exequiel ; Valero, Elvis ; Lenes, Eber</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-dbb8a6f9a8d1b943fdd4931c1127bd9baccfb17f72651f7f72ddf956fd8eb7143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied mathematics</topic><topic>Boundary conditions</topic><topic>Boundary control</topic><topic>Heat transfer</topic><topic>Lagrange multiplier</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>Mathematical programming</topic><topic>Numerical analysis</topic><topic>Optimal control</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mallea-Zepeda, Exequiel</creatorcontrib><creatorcontrib>Valero, Elvis</creatorcontrib><creatorcontrib>Lenes, Eber</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mallea-Zepeda, Exequiel</au><au>Valero, Elvis</au><au>Lenes, Eber</au><au>Yuming, Qin</au><au>Qin Yuming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>We analyze an optimal boundary control problem for heat convection equations in a three-dimensional domain, with mixed boundary conditions. We prove the existence of optimal solutions, by considering boundary controls for the velocity vector and the temperature. The analyzed optimal control problem includes the minimization of a Lebesgue norm between the velocity and some desired field, as well as the temperature and some desired temperature. By using the Lagrange multipliers theorem we derive an optimality system. We also give a second-order sufficient condition.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/7959761</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7726-2362</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-14
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2000987935
source Wiley-Blackwell Open Access Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Applied mathematics
Boundary conditions
Boundary control
Heat transfer
Lagrange multiplier
Mathematical analysis
Mathematical problems
Mathematical programming
Numerical analysis
Optimal control
Optimization
title Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20Control%20Problem%20for%20Heat%20Convection%20Equations%20with%20Slip%20Boundary%20Condition&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Mallea-Zepeda,%20Exequiel&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/7959761&rft_dat=%3Cproquest_cross%3E2000987935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000987935&rft_id=info:pmid/&rfr_iscdi=true