One-step production of phage–silicon nanoparticles by PLAL as fluorescent nanoprobes for cell identification
Silicon nanoparticles (SiNPs) are widely used as promising nanoplatform owing to their high specific surface area, optical properties and biocompatibility. Silicon nanoparticles find possible application in biomedical environment for their potential quantum effects and the functionalization with bio...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2018-03, Vol.124 (3), p.1-6, Article 222 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 124 |
creator | De Plano, Laura M. Scibilia, Santi Rizzo, Maria Giovanna Crea, Sara Franco, Domenico Mezzasalma, Angela M. Guglielmino, Salvatore P. P. |
description | Silicon nanoparticles (SiNPs) are widely used as promising nanoplatform owing to their high specific surface area, optical properties and biocompatibility. Silicon nanoparticles find possible application in biomedical environment for their potential quantum effects and the functionalization with biomaterials, too. In this work, we propose a new approach for bio-functionalization of SiNPs and M13-engineered bacteriophage, displaying specific peptides that selectively recognize peripheral blood mononuclear cells (PBMC). The “one-step” functionalization is conducted during the laser ablation of silicon plate in buffer solution with engineered bacteriophages, to obtain SiNPs binding bacteriophages (phage–SiNPs). The interaction between SiNPs and bacteriophage is investigated. Particularly, the optical and morphological characterizations of phage–SiNPs are performed by UV–Vis spectroscopy, scanning electron microscopy operating in transmission mode (STEM) and X-ray spectroscopy (EDX). The functionality of phage–SiNPs is investigated through the photoemissive properties in recognition test on PBMC. Our results showed that phage–SiNPs maintain the capability and the activity to bind PBMC within 30 min. The fluorescence of phage–SiNPs allowed to obtain an optical signal on cell type targets. Finally, the proposed strategy demonstrated its potential use in in vitro applications and could be exploited to realize an optical biosensor to detect a specific target. |
doi_str_mv | 10.1007/s00339-018-1637-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2000299545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000299545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e2f95c3066fce201e38ce317bd36f31aab06bedaded437317252fe8d81d89bd53</originalsourceid><addsrcrecordid>eNp1kMtKxDAYhYMoOF4ewF3AdTSXXpfD4A0K40LXIU3-jBlqU5POojvfwTf0SUyp4MpsAjnfOf-fg9AVozeM0vI2UipETSirCCtESaYjtGKZ4IQWgh6jFa2zklSiLk7RWYx7mk7G-Qr12x5IHGHAQ_DmoEfne-wtHt7UDr4_v6LrnE5Pver9oMLodAcRtxN-btYNVhHb7uADRA39uEDBt4mwPmANXYedSYqzTqs5-gKdWNVFuPy9z9Hr_d3L5pE024enzbohWrBiJMBtnWtBi8Jq4JSBqDQIVrZGFFYwpVpatGCUAZOJMgk85xYqUzFT1a3JxTm6XnLTOh8HiKPc-0Po00jJ09d5XefZTLGF0sHHGMDKIbh3FSbJqJxrlUutMtUq51rllDx88cTE9jsIf8n_m34A5hZ-YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000299545</pqid></control><display><type>article</type><title>One-step production of phage–silicon nanoparticles by PLAL as fluorescent nanoprobes for cell identification</title><source>SpringerLink Journals</source><creator>De Plano, Laura M. ; Scibilia, Santi ; Rizzo, Maria Giovanna ; Crea, Sara ; Franco, Domenico ; Mezzasalma, Angela M. ; Guglielmino, Salvatore P. P.</creator><creatorcontrib>De Plano, Laura M. ; Scibilia, Santi ; Rizzo, Maria Giovanna ; Crea, Sara ; Franco, Domenico ; Mezzasalma, Angela M. ; Guglielmino, Salvatore P. P.</creatorcontrib><description>Silicon nanoparticles (SiNPs) are widely used as promising nanoplatform owing to their high specific surface area, optical properties and biocompatibility. Silicon nanoparticles find possible application in biomedical environment for their potential quantum effects and the functionalization with biomaterials, too. In this work, we propose a new approach for bio-functionalization of SiNPs and M13-engineered bacteriophage, displaying specific peptides that selectively recognize peripheral blood mononuclear cells (PBMC). The “one-step” functionalization is conducted during the laser ablation of silicon plate in buffer solution with engineered bacteriophages, to obtain SiNPs binding bacteriophages (phage–SiNPs). The interaction between SiNPs and bacteriophage is investigated. Particularly, the optical and morphological characterizations of phage–SiNPs are performed by UV–Vis spectroscopy, scanning electron microscopy operating in transmission mode (STEM) and X-ray spectroscopy (EDX). The functionality of phage–SiNPs is investigated through the photoemissive properties in recognition test on PBMC. Our results showed that phage–SiNPs maintain the capability and the activity to bind PBMC within 30 min. The fluorescence of phage–SiNPs allowed to obtain an optical signal on cell type targets. Finally, the proposed strategy demonstrated its potential use in in vitro applications and could be exploited to realize an optical biosensor to detect a specific target.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-018-1637-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Biocompatibility ; Biomedical materials ; Biosensors ; Buffer solutions ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Fluorescence ; Laser ablation ; Machines ; Manufacturing ; Materials science ; Nanoparticles ; Nanotechnology ; Optical and Electronic Materials ; Optical communication ; Optical properties ; Peptides ; Phages ; Physics ; Physics and Astronomy ; Processes ; Scanning transmission electron microscopy ; Silicon ; Spectrum analysis ; Surfaces and Interfaces ; Target detection ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2018-03, Vol.124 (3), p.1-6, Article 222</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e2f95c3066fce201e38ce317bd36f31aab06bedaded437317252fe8d81d89bd53</citedby><cites>FETCH-LOGICAL-c316t-e2f95c3066fce201e38ce317bd36f31aab06bedaded437317252fe8d81d89bd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-018-1637-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-018-1637-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>De Plano, Laura M.</creatorcontrib><creatorcontrib>Scibilia, Santi</creatorcontrib><creatorcontrib>Rizzo, Maria Giovanna</creatorcontrib><creatorcontrib>Crea, Sara</creatorcontrib><creatorcontrib>Franco, Domenico</creatorcontrib><creatorcontrib>Mezzasalma, Angela M.</creatorcontrib><creatorcontrib>Guglielmino, Salvatore P. P.</creatorcontrib><title>One-step production of phage–silicon nanoparticles by PLAL as fluorescent nanoprobes for cell identification</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Silicon nanoparticles (SiNPs) are widely used as promising nanoplatform owing to their high specific surface area, optical properties and biocompatibility. Silicon nanoparticles find possible application in biomedical environment for their potential quantum effects and the functionalization with biomaterials, too. In this work, we propose a new approach for bio-functionalization of SiNPs and M13-engineered bacteriophage, displaying specific peptides that selectively recognize peripheral blood mononuclear cells (PBMC). The “one-step” functionalization is conducted during the laser ablation of silicon plate in buffer solution with engineered bacteriophages, to obtain SiNPs binding bacteriophages (phage–SiNPs). The interaction between SiNPs and bacteriophage is investigated. Particularly, the optical and morphological characterizations of phage–SiNPs are performed by UV–Vis spectroscopy, scanning electron microscopy operating in transmission mode (STEM) and X-ray spectroscopy (EDX). The functionality of phage–SiNPs is investigated through the photoemissive properties in recognition test on PBMC. Our results showed that phage–SiNPs maintain the capability and the activity to bind PBMC within 30 min. The fluorescence of phage–SiNPs allowed to obtain an optical signal on cell type targets. Finally, the proposed strategy demonstrated its potential use in in vitro applications and could be exploited to realize an optical biosensor to detect a specific target.</description><subject>Applied physics</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Biosensors</subject><subject>Buffer solutions</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Fluorescence</subject><subject>Laser ablation</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optical communication</subject><subject>Optical properties</subject><subject>Peptides</subject><subject>Phages</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Scanning transmission electron microscopy</subject><subject>Silicon</subject><subject>Spectrum analysis</subject><subject>Surfaces and Interfaces</subject><subject>Target detection</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAYhYMoOF4ewF3AdTSXXpfD4A0K40LXIU3-jBlqU5POojvfwTf0SUyp4MpsAjnfOf-fg9AVozeM0vI2UipETSirCCtESaYjtGKZ4IQWgh6jFa2zklSiLk7RWYx7mk7G-Qr12x5IHGHAQ_DmoEfne-wtHt7UDr4_v6LrnE5Pver9oMLodAcRtxN-btYNVhHb7uADRA39uEDBt4mwPmANXYedSYqzTqs5-gKdWNVFuPy9z9Hr_d3L5pE024enzbohWrBiJMBtnWtBi8Jq4JSBqDQIVrZGFFYwpVpatGCUAZOJMgk85xYqUzFT1a3JxTm6XnLTOh8HiKPc-0Po00jJ09d5XefZTLGF0sHHGMDKIbh3FSbJqJxrlUutMtUq51rllDx88cTE9jsIf8n_m34A5hZ-YA</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>De Plano, Laura M.</creator><creator>Scibilia, Santi</creator><creator>Rizzo, Maria Giovanna</creator><creator>Crea, Sara</creator><creator>Franco, Domenico</creator><creator>Mezzasalma, Angela M.</creator><creator>Guglielmino, Salvatore P. P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>One-step production of phage–silicon nanoparticles by PLAL as fluorescent nanoprobes for cell identification</title><author>De Plano, Laura M. ; Scibilia, Santi ; Rizzo, Maria Giovanna ; Crea, Sara ; Franco, Domenico ; Mezzasalma, Angela M. ; Guglielmino, Salvatore P. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e2f95c3066fce201e38ce317bd36f31aab06bedaded437317252fe8d81d89bd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Biosensors</topic><topic>Buffer solutions</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Fluorescence</topic><topic>Laser ablation</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optical communication</topic><topic>Optical properties</topic><topic>Peptides</topic><topic>Phages</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Scanning transmission electron microscopy</topic><topic>Silicon</topic><topic>Spectrum analysis</topic><topic>Surfaces and Interfaces</topic><topic>Target detection</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Plano, Laura M.</creatorcontrib><creatorcontrib>Scibilia, Santi</creatorcontrib><creatorcontrib>Rizzo, Maria Giovanna</creatorcontrib><creatorcontrib>Crea, Sara</creatorcontrib><creatorcontrib>Franco, Domenico</creatorcontrib><creatorcontrib>Mezzasalma, Angela M.</creatorcontrib><creatorcontrib>Guglielmino, Salvatore P. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Plano, Laura M.</au><au>Scibilia, Santi</au><au>Rizzo, Maria Giovanna</au><au>Crea, Sara</au><au>Franco, Domenico</au><au>Mezzasalma, Angela M.</au><au>Guglielmino, Salvatore P. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-step production of phage–silicon nanoparticles by PLAL as fluorescent nanoprobes for cell identification</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>124</volume><issue>3</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><artnum>222</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Silicon nanoparticles (SiNPs) are widely used as promising nanoplatform owing to their high specific surface area, optical properties and biocompatibility. Silicon nanoparticles find possible application in biomedical environment for their potential quantum effects and the functionalization with biomaterials, too. In this work, we propose a new approach for bio-functionalization of SiNPs and M13-engineered bacteriophage, displaying specific peptides that selectively recognize peripheral blood mononuclear cells (PBMC). The “one-step” functionalization is conducted during the laser ablation of silicon plate in buffer solution with engineered bacteriophages, to obtain SiNPs binding bacteriophages (phage–SiNPs). The interaction between SiNPs and bacteriophage is investigated. Particularly, the optical and morphological characterizations of phage–SiNPs are performed by UV–Vis spectroscopy, scanning electron microscopy operating in transmission mode (STEM) and X-ray spectroscopy (EDX). The functionality of phage–SiNPs is investigated through the photoemissive properties in recognition test on PBMC. Our results showed that phage–SiNPs maintain the capability and the activity to bind PBMC within 30 min. The fluorescence of phage–SiNPs allowed to obtain an optical signal on cell type targets. Finally, the proposed strategy demonstrated its potential use in in vitro applications and could be exploited to realize an optical biosensor to detect a specific target.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-018-1637-y</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2018-03, Vol.124 (3), p.1-6, Article 222 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2000299545 |
source | SpringerLink Journals |
subjects | Applied physics Biocompatibility Biomedical materials Biosensors Buffer solutions Characterization and Evaluation of Materials Condensed Matter Physics Fluorescence Laser ablation Machines Manufacturing Materials science Nanoparticles Nanotechnology Optical and Electronic Materials Optical communication Optical properties Peptides Phages Physics Physics and Astronomy Processes Scanning transmission electron microscopy Silicon Spectrum analysis Surfaces and Interfaces Target detection Thin Films |
title | One-step production of phage–silicon nanoparticles by PLAL as fluorescent nanoprobes for cell identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-step%20production%20of%20phage%E2%80%93silicon%20nanoparticles%20by%20PLAL%20as%20fluorescent%20nanoprobes%20for%20cell%20identification&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=De%20Plano,%20Laura%20M.&rft.date=2018-03-01&rft.volume=124&rft.issue=3&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.artnum=222&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-018-1637-y&rft_dat=%3Cproquest_cross%3E2000299545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000299545&rft_id=info:pmid/&rfr_iscdi=true |