Shifted convolution L-series values for elliptic curves
Using explicit constructions of the Weierstrass mock modular form and Eisenstein series coefficients, we obtain closed formulas for the generating functions of values of shifted convolution L -functions associated to certain elliptic curves. These identities provide a surprising relation between wei...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2018-03, Vol.110 (3), p.225-244 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 244 |
---|---|
container_issue | 3 |
container_start_page | 225 |
container_title | Archiv der Mathematik |
container_volume | 110 |
creator | Ali, Asra Mani, Nitya |
description | Using explicit constructions of the Weierstrass mock modular form and Eisenstein series coefficients, we obtain closed formulas for the generating functions of values of shifted convolution
L
-functions associated to certain elliptic curves. These identities provide a surprising relation between weight 2 newforms and shifted convolution
L
-values when the underlying elliptic curve has modular degree 1 with conductor
N
such that
genus
(
X
0
(
N
)
)
=
1
. |
doi_str_mv | 10.1007/s00013-017-1112-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1999726816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1999726816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c1046edafe8ed81cbcdd0a37fabbf1c5bcb06c48cc47e477415524e57f119f293</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4-gLeC52gmTZvkKIu6woIHFbyFNp1ol9qsSVvw7U2pBy-e5jDf_8_wEXIJ7BoYkzeRMQY5ZSApAHBaHpEVCM6o0rk6Jqu0zqlS-u2UnMW4TzBXUq-IfP5o3YBNZn0_-W4cWt9nOxoxtBizqerGNJwPGXZdexham9kxTBjPyYmruogXv3NNXu_vXjZbunt6eNzc7qjNCz1QC0yU2FQOFTYKbG2bhlW5dFVdO7BFbWtWWqGsFRKFlAKKggsspAPQjut8Ta6W3kPwX-mXwez9GPp00oDWWvJSQZkoWCgbfIwBnTmE9rMK3waYmf2YxY9Jfszsx8wZvmRiYvt3DH-a_w39AJMraG4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999726816</pqid></control><display><type>article</type><title>Shifted convolution L-series values for elliptic curves</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ali, Asra ; Mani, Nitya</creator><creatorcontrib>Ali, Asra ; Mani, Nitya</creatorcontrib><description>Using explicit constructions of the Weierstrass mock modular form and Eisenstein series coefficients, we obtain closed formulas for the generating functions of values of shifted convolution
L
-functions associated to certain elliptic curves. These identities provide a surprising relation between weight 2 newforms and shifted convolution
L
-values when the underlying elliptic curve has modular degree 1 with conductor
N
such that
genus
(
X
0
(
N
)
)
=
1
.</description><identifier>ISSN: 0003-889X</identifier><identifier>EISSN: 1420-8938</identifier><identifier>DOI: 10.1007/s00013-017-1112-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Conductors ; Convolution ; Elliptic functions ; Mathematics ; Mathematics and Statistics ; Modular construction</subject><ispartof>Archiv der Mathematik, 2018-03, Vol.110 (3), p.225-244</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-c1046edafe8ed81cbcdd0a37fabbf1c5bcb06c48cc47e477415524e57f119f293</citedby><cites>FETCH-LOGICAL-c359t-c1046edafe8ed81cbcdd0a37fabbf1c5bcb06c48cc47e477415524e57f119f293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00013-017-1112-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00013-017-1112-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ali, Asra</creatorcontrib><creatorcontrib>Mani, Nitya</creatorcontrib><title>Shifted convolution L-series values for elliptic curves</title><title>Archiv der Mathematik</title><addtitle>Arch. Math</addtitle><description>Using explicit constructions of the Weierstrass mock modular form and Eisenstein series coefficients, we obtain closed formulas for the generating functions of values of shifted convolution
L
-functions associated to certain elliptic curves. These identities provide a surprising relation between weight 2 newforms and shifted convolution
L
-values when the underlying elliptic curve has modular degree 1 with conductor
N
such that
genus
(
X
0
(
N
)
)
=
1
.</description><subject>Conductors</subject><subject>Convolution</subject><subject>Elliptic functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modular construction</subject><issn>0003-889X</issn><issn>1420-8938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAQhoMouK4-gLeC52gmTZvkKIu6woIHFbyFNp1ol9qsSVvw7U2pBy-e5jDf_8_wEXIJ7BoYkzeRMQY5ZSApAHBaHpEVCM6o0rk6Jqu0zqlS-u2UnMW4TzBXUq-IfP5o3YBNZn0_-W4cWt9nOxoxtBizqerGNJwPGXZdexham9kxTBjPyYmruogXv3NNXu_vXjZbunt6eNzc7qjNCz1QC0yU2FQOFTYKbG2bhlW5dFVdO7BFbWtWWqGsFRKFlAKKggsspAPQjut8Ta6W3kPwX-mXwez9GPp00oDWWvJSQZkoWCgbfIwBnTmE9rMK3waYmf2YxY9Jfszsx8wZvmRiYvt3DH-a_w39AJMraG4</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Ali, Asra</creator><creator>Mani, Nitya</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>Shifted convolution L-series values for elliptic curves</title><author>Ali, Asra ; Mani, Nitya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c1046edafe8ed81cbcdd0a37fabbf1c5bcb06c48cc47e477415524e57f119f293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Conductors</topic><topic>Convolution</topic><topic>Elliptic functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modular construction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Asra</creatorcontrib><creatorcontrib>Mani, Nitya</creatorcontrib><collection>CrossRef</collection><jtitle>Archiv der Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Asra</au><au>Mani, Nitya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shifted convolution L-series values for elliptic curves</atitle><jtitle>Archiv der Mathematik</jtitle><stitle>Arch. Math</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>110</volume><issue>3</issue><spage>225</spage><epage>244</epage><pages>225-244</pages><issn>0003-889X</issn><eissn>1420-8938</eissn><abstract>Using explicit constructions of the Weierstrass mock modular form and Eisenstein series coefficients, we obtain closed formulas for the generating functions of values of shifted convolution
L
-functions associated to certain elliptic curves. These identities provide a surprising relation between weight 2 newforms and shifted convolution
L
-values when the underlying elliptic curve has modular degree 1 with conductor
N
such that
genus
(
X
0
(
N
)
)
=
1
.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00013-017-1112-6</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-889X |
ispartof | Archiv der Mathematik, 2018-03, Vol.110 (3), p.225-244 |
issn | 0003-889X 1420-8938 |
language | eng |
recordid | cdi_proquest_journals_1999726816 |
source | SpringerLink Journals - AutoHoldings |
subjects | Conductors Convolution Elliptic functions Mathematics Mathematics and Statistics Modular construction |
title | Shifted convolution L-series values for elliptic curves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shifted%20convolution%20L-series%20values%20for%20elliptic%20curves&rft.jtitle=Archiv%20der%20Mathematik&rft.au=Ali,%20Asra&rft.date=2018-03-01&rft.volume=110&rft.issue=3&rft.spage=225&rft.epage=244&rft.pages=225-244&rft.issn=0003-889X&rft.eissn=1420-8938&rft_id=info:doi/10.1007/s00013-017-1112-6&rft_dat=%3Cproquest_cross%3E1999726816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1999726816&rft_id=info:pmid/&rfr_iscdi=true |