How to Improve the Accuracy and Reduce the Cost of Personnel Selection

One of the clearest lessons to emerge from decades of research on personnel selection is that the traditional face-to-face job interview is terrible for predicting future job performance. The sad truth is that no selection tool is perfect, and future performance cannot be predicted precisely, but th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:California management review 2017-11, Vol.60 (1), p.8-17
1. Verfasser: Moore, Don A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 8
container_title California management review
container_volume 60
creator Moore, Don A.
description One of the clearest lessons to emerge from decades of research on personnel selection is that the traditional face-to-face job interview is terrible for predicting future job performance. The sad truth is that no selection tool is perfect, and future performance cannot be predicted precisely, but the traditional interview is particularly bad. Fortunately, it is easy to improve the predictive validity of the job interview by structuring it around hard-to-fake tests of key skills and abilities that actually predict future performance. There are also other tools as accurate as a structured interview and substantially less expensive to administer.
doi_str_mv 10.1177/0008125617725288
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1999271526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0008125617725288</sage_id><sourcerecordid>1999271526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-1c049584bd66a35debaf1fa8cb75796c6e7c2bce027e618e7af270ffd9ff7e553</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWL17XPAc3dlkHzmWYm2hoPg4h81mVlvSbN1NlP77psSDCJ7m8T1m-Ai5BnYLoNQdY0wDF3LoueBan5CEg-SpFjI_JckRTo_4ObmIcTOMCnKRkPnCf9PO0-V2F_wX0u4D6dTaPhi7p6at6TPWvR33Mx876h19whB922JDX7BB2619e0nOnGkiXv3UCXmb37_OFunq8WE5m65Sm-XQpWBZXgidV7WUJhM1VsaBM9pWSqhCWonK8soi4wolaFTGccWcqwvnFAqRTcjN6Dt8-9lj7MqN70M7nCyhKAquQHA5sNjIssHHGNCVu7DemrAvgZXHtMq_aQ2SdJRE846_TP_jHwD8RGi7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999271526</pqid></control><display><type>article</type><title>How to Improve the Accuracy and Reduce the Cost of Personnel Selection</title><source>Access via SAGE</source><creator>Moore, Don A.</creator><creatorcontrib>Moore, Don A.</creatorcontrib><description>One of the clearest lessons to emerge from decades of research on personnel selection is that the traditional face-to-face job interview is terrible for predicting future job performance. The sad truth is that no selection tool is perfect, and future performance cannot be predicted precisely, but the traditional interview is particularly bad. Fortunately, it is easy to improve the predictive validity of the job interview by structuring it around hard-to-fake tests of key skills and abilities that actually predict future performance. There are also other tools as accurate as a structured interview and substantially less expensive to administer.</description><identifier>ISSN: 0008-1256</identifier><identifier>EISSN: 2162-8564</identifier><identifier>DOI: 10.1177/0008125617725288</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Accuracy ; Employment interviews ; Job performance ; Management science ; Organizational behavior ; Personnel selection ; Predictive validity ; Truth</subject><ispartof>California management review, 2017-11, Vol.60 (1), p.8-17</ispartof><rights>The Regents of the University of California 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-1c049584bd66a35debaf1fa8cb75796c6e7c2bce027e618e7af270ffd9ff7e553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0008125617725288$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0008125617725288$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Moore, Don A.</creatorcontrib><title>How to Improve the Accuracy and Reduce the Cost of Personnel Selection</title><title>California management review</title><description>One of the clearest lessons to emerge from decades of research on personnel selection is that the traditional face-to-face job interview is terrible for predicting future job performance. The sad truth is that no selection tool is perfect, and future performance cannot be predicted precisely, but the traditional interview is particularly bad. Fortunately, it is easy to improve the predictive validity of the job interview by structuring it around hard-to-fake tests of key skills and abilities that actually predict future performance. There are also other tools as accurate as a structured interview and substantially less expensive to administer.</description><subject>Accuracy</subject><subject>Employment interviews</subject><subject>Job performance</subject><subject>Management science</subject><subject>Organizational behavior</subject><subject>Personnel selection</subject><subject>Predictive validity</subject><subject>Truth</subject><issn>0008-1256</issn><issn>2162-8564</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLw0AQXkTBWL17XPAc3dlkHzmWYm2hoPg4h81mVlvSbN1NlP77psSDCJ7m8T1m-Ai5BnYLoNQdY0wDF3LoueBan5CEg-SpFjI_JckRTo_4ObmIcTOMCnKRkPnCf9PO0-V2F_wX0u4D6dTaPhi7p6at6TPWvR33Mx876h19whB922JDX7BB2619e0nOnGkiXv3UCXmb37_OFunq8WE5m65Sm-XQpWBZXgidV7WUJhM1VsaBM9pWSqhCWonK8soi4wolaFTGccWcqwvnFAqRTcjN6Dt8-9lj7MqN70M7nCyhKAquQHA5sNjIssHHGNCVu7DemrAvgZXHtMq_aQ2SdJRE846_TP_jHwD8RGi7</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Moore, Don A.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20171101</creationdate><title>How to Improve the Accuracy and Reduce the Cost of Personnel Selection</title><author>Moore, Don A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-1c049584bd66a35debaf1fa8cb75796c6e7c2bce027e618e7af270ffd9ff7e553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Employment interviews</topic><topic>Job performance</topic><topic>Management science</topic><topic>Organizational behavior</topic><topic>Personnel selection</topic><topic>Predictive validity</topic><topic>Truth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, Don A.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>California management review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, Don A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to Improve the Accuracy and Reduce the Cost of Personnel Selection</atitle><jtitle>California management review</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>60</volume><issue>1</issue><spage>8</spage><epage>17</epage><pages>8-17</pages><issn>0008-1256</issn><eissn>2162-8564</eissn><abstract>One of the clearest lessons to emerge from decades of research on personnel selection is that the traditional face-to-face job interview is terrible for predicting future job performance. The sad truth is that no selection tool is perfect, and future performance cannot be predicted precisely, but the traditional interview is particularly bad. Fortunately, it is easy to improve the predictive validity of the job interview by structuring it around hard-to-fake tests of key skills and abilities that actually predict future performance. There are also other tools as accurate as a structured interview and substantially less expensive to administer.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/0008125617725288</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-1256
ispartof California management review, 2017-11, Vol.60 (1), p.8-17
issn 0008-1256
2162-8564
language eng
recordid cdi_proquest_journals_1999271526
source Access via SAGE
subjects Accuracy
Employment interviews
Job performance
Management science
Organizational behavior
Personnel selection
Predictive validity
Truth
title How to Improve the Accuracy and Reduce the Cost of Personnel Selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20Improve%20the%20Accuracy%20and%20Reduce%20the%20Cost%20of%20Personnel%20Selection&rft.jtitle=California%20management%20review&rft.au=Moore,%20Don%20A.&rft.date=2017-11-01&rft.volume=60&rft.issue=1&rft.spage=8&rft.epage=17&rft.pages=8-17&rft.issn=0008-1256&rft.eissn=2162-8564&rft_id=info:doi/10.1177/0008125617725288&rft_dat=%3Cproquest_cross%3E1999271526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1999271526&rft_id=info:pmid/&rft_sage_id=10.1177_0008125617725288&rfr_iscdi=true