Expander graphs and their applications

Expander graphs were first defined by Bassalygo and Pinsker, and their existence first proved by Pinsker in the early '70s. The property of being an expander seems significant in many of these mathematical, computational and physical contexts. It is not surprising that expanders are useful in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin (new series) of the American Mathematical Society 2006-10, Vol.43 (4), p.439-562
Hauptverfasser: Hoory, Shlomo, Linial, Nathan, Wigderson, Avi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 562
container_issue 4
container_start_page 439
container_title Bulletin (new series) of the American Mathematical Society
container_volume 43
creator Hoory, Shlomo
Linial, Nathan
Wigderson, Avi
description Expander graphs were first defined by Bassalygo and Pinsker, and their existence first proved by Pinsker in the early '70s. The property of being an expander seems significant in many of these mathematical, computational and physical contexts. It is not surprising that expanders are useful in the design and analysis of communication networks. What is less obvious is that expanders have surprising utility in other computational settings such as in the theory of error correcting codes and the theory of pseudorandomness. Here, Hoory et al discuss the result of their research about expander graphs and their applications.
doi_str_mv 10.1090/S0273-0979-06-01126-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199833804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1168768951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-b24fd146d331b9d1993d25d6352b17b69ce65967b41dc3b826034ae4648513e3</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoWKcfQSg--Ba9y6Vp8ihjTmHgg3sPaZO6jtnWpAP99nabeC_HwY__3f0Yu0V4QDDw-A6iJA6mNBwUB0ShuD5jGYLW3EhdnLPsH7lkVyltYSotMWP3i-_BdT7E_CO6YZPyacjHTWhj7oZh19ZubPsuXbOLxu1SuPnrM7Z-XqznL3z1tnydP614TaUZeSVk41EqT4SV8WgMeVF4RYWosKyUqYMqjCorib6mSgsFJF2QajoSKdCM3Z1ih9h_7UMa7bbfx27aaKcsTaRBTlBxgurYpxRDY4fYfrr4YxHsQYg9CrGHby0oexRiNf0C3iFRbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199833804</pqid></control><display><type>article</type><title>Expander graphs and their applications</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Project Euclid Open Access</source><source>American Mathematical Society Publications</source><creator>Hoory, Shlomo ; Linial, Nathan ; Wigderson, Avi</creator><creatorcontrib>Hoory, Shlomo ; Linial, Nathan ; Wigderson, Avi</creatorcontrib><description>Expander graphs were first defined by Bassalygo and Pinsker, and their existence first proved by Pinsker in the early '70s. The property of being an expander seems significant in many of these mathematical, computational and physical contexts. It is not surprising that expanders are useful in the design and analysis of communication networks. What is less obvious is that expanders have surprising utility in other computational settings such as in the theory of error correcting codes and the theory of pseudorandomness. Here, Hoory et al discuss the result of their research about expander graphs and their applications.</description><identifier>ISSN: 0273-0979</identifier><identifier>EISSN: 1088-9485</identifier><identifier>DOI: 10.1090/S0273-0979-06-01126-8</identifier><language>eng</language><publisher>Providence: American Mathematical Society</publisher><subject>Graph representations ; Graph theory ; Mathematics</subject><ispartof>Bulletin (new series) of the American Mathematical Society, 2006-10, Vol.43 (4), p.439-562</ispartof><rights>Copyright American Mathematical Society 2006</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-b24fd146d331b9d1993d25d6352b17b69ce65967b41dc3b826034ae4648513e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hoory, Shlomo</creatorcontrib><creatorcontrib>Linial, Nathan</creatorcontrib><creatorcontrib>Wigderson, Avi</creatorcontrib><title>Expander graphs and their applications</title><title>Bulletin (new series) of the American Mathematical Society</title><description>Expander graphs were first defined by Bassalygo and Pinsker, and their existence first proved by Pinsker in the early '70s. The property of being an expander seems significant in many of these mathematical, computational and physical contexts. It is not surprising that expanders are useful in the design and analysis of communication networks. What is less obvious is that expanders have surprising utility in other computational settings such as in the theory of error correcting codes and the theory of pseudorandomness. Here, Hoory et al discuss the result of their research about expander graphs and their applications.</description><subject>Graph representations</subject><subject>Graph theory</subject><subject>Mathematics</subject><issn>0273-0979</issn><issn>1088-9485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAQx4MoWKcfQSg--Ba9y6Vp8ihjTmHgg3sPaZO6jtnWpAP99nabeC_HwY__3f0Yu0V4QDDw-A6iJA6mNBwUB0ShuD5jGYLW3EhdnLPsH7lkVyltYSotMWP3i-_BdT7E_CO6YZPyacjHTWhj7oZh19ZubPsuXbOLxu1SuPnrM7Z-XqznL3z1tnydP614TaUZeSVk41EqT4SV8WgMeVF4RYWosKyUqYMqjCorib6mSgsFJF2QajoSKdCM3Z1ih9h_7UMa7bbfx27aaKcsTaRBTlBxgurYpxRDY4fYfrr4YxHsQYg9CrGHby0oexRiNf0C3iFRbA</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Hoory, Shlomo</creator><creator>Linial, Nathan</creator><creator>Wigderson, Avi</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>200610</creationdate><title>Expander graphs and their applications</title><author>Hoory, Shlomo ; Linial, Nathan ; Wigderson, Avi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-b24fd146d331b9d1993d25d6352b17b69ce65967b41dc3b826034ae4648513e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Graph representations</topic><topic>Graph theory</topic><topic>Mathematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Hoory, Shlomo</creatorcontrib><creatorcontrib>Linial, Nathan</creatorcontrib><creatorcontrib>Wigderson, Avi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Bulletin (new series) of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoory, Shlomo</au><au>Linial, Nathan</au><au>Wigderson, Avi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expander graphs and their applications</atitle><jtitle>Bulletin (new series) of the American Mathematical Society</jtitle><date>2006-10</date><risdate>2006</risdate><volume>43</volume><issue>4</issue><spage>439</spage><epage>562</epage><pages>439-562</pages><issn>0273-0979</issn><eissn>1088-9485</eissn><abstract>Expander graphs were first defined by Bassalygo and Pinsker, and their existence first proved by Pinsker in the early '70s. The property of being an expander seems significant in many of these mathematical, computational and physical contexts. It is not surprising that expanders are useful in the design and analysis of communication networks. What is less obvious is that expanders have surprising utility in other computational settings such as in the theory of error correcting codes and the theory of pseudorandomness. Here, Hoory et al discuss the result of their research about expander graphs and their applications.</abstract><cop>Providence</cop><pub>American Mathematical Society</pub><doi>10.1090/S0273-0979-06-01126-8</doi><tpages>124</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0273-0979
ispartof Bulletin (new series) of the American Mathematical Society, 2006-10, Vol.43 (4), p.439-562
issn 0273-0979
1088-9485
language eng
recordid cdi_proquest_journals_199833804
source American Mathematical Society Publications (Freely Accessible); Project Euclid Open Access; American Mathematical Society Publications
subjects Graph representations
Graph theory
Mathematics
title Expander graphs and their applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expander%20graphs%20and%20their%20applications&rft.jtitle=Bulletin%20(new%20series)%20of%20the%20American%20Mathematical%20Society&rft.au=Hoory,%20Shlomo&rft.date=2006-10&rft.volume=43&rft.issue=4&rft.spage=439&rft.epage=562&rft.pages=439-562&rft.issn=0273-0979&rft.eissn=1088-9485&rft_id=info:doi/10.1090/S0273-0979-06-01126-8&rft_dat=%3Cproquest_cross%3E1168768951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199833804&rft_id=info:pmid/&rfr_iscdi=true