Expander graphs and their applications
Expander graphs were first defined by Bassalygo and Pinsker, and their existence first proved by Pinsker in the early '70s. The property of being an expander seems significant in many of these mathematical, computational and physical contexts. It is not surprising that expanders are useful in t...
Gespeichert in:
Veröffentlicht in: | Bulletin (new series) of the American Mathematical Society 2006-10, Vol.43 (4), p.439-562 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 562 |
---|---|
container_issue | 4 |
container_start_page | 439 |
container_title | Bulletin (new series) of the American Mathematical Society |
container_volume | 43 |
creator | Hoory, Shlomo Linial, Nathan Wigderson, Avi |
description | Expander graphs were first defined by Bassalygo and Pinsker, and their existence first proved by Pinsker in the early '70s. The property of being an expander seems significant in many of these mathematical, computational and physical contexts. It is not surprising that expanders are useful in the design and analysis of communication networks. What is less obvious is that expanders have surprising utility in other computational settings such as in the theory of error correcting codes and the theory of pseudorandomness. Here, Hoory et al discuss the result of their research about expander graphs and their applications. |
doi_str_mv | 10.1090/S0273-0979-06-01126-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199833804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1168768951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-b24fd146d331b9d1993d25d6352b17b69ce65967b41dc3b826034ae4648513e3</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoWKcfQSg--Ba9y6Vp8ihjTmHgg3sPaZO6jtnWpAP99nabeC_HwY__3f0Yu0V4QDDw-A6iJA6mNBwUB0ShuD5jGYLW3EhdnLPsH7lkVyltYSotMWP3i-_BdT7E_CO6YZPyacjHTWhj7oZh19ZubPsuXbOLxu1SuPnrM7Z-XqznL3z1tnydP614TaUZeSVk41EqT4SV8WgMeVF4RYWosKyUqYMqjCorib6mSgsFJF2QajoSKdCM3Z1ih9h_7UMa7bbfx27aaKcsTaRBTlBxgurYpxRDY4fYfrr4YxHsQYg9CrGHby0oexRiNf0C3iFRbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199833804</pqid></control><display><type>article</type><title>Expander graphs and their applications</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Project Euclid Open Access</source><source>American Mathematical Society Publications</source><creator>Hoory, Shlomo ; Linial, Nathan ; Wigderson, Avi</creator><creatorcontrib>Hoory, Shlomo ; Linial, Nathan ; Wigderson, Avi</creatorcontrib><description>Expander graphs were first defined by Bassalygo and Pinsker, and their existence first proved by Pinsker in the early '70s. The property of being an expander seems significant in many of these mathematical, computational and physical contexts. It is not surprising that expanders are useful in the design and analysis of communication networks. What is less obvious is that expanders have surprising utility in other computational settings such as in the theory of error correcting codes and the theory of pseudorandomness. Here, Hoory et al discuss the result of their research about expander graphs and their applications.</description><identifier>ISSN: 0273-0979</identifier><identifier>EISSN: 1088-9485</identifier><identifier>DOI: 10.1090/S0273-0979-06-01126-8</identifier><language>eng</language><publisher>Providence: American Mathematical Society</publisher><subject>Graph representations ; Graph theory ; Mathematics</subject><ispartof>Bulletin (new series) of the American Mathematical Society, 2006-10, Vol.43 (4), p.439-562</ispartof><rights>Copyright American Mathematical Society 2006</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-b24fd146d331b9d1993d25d6352b17b69ce65967b41dc3b826034ae4648513e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hoory, Shlomo</creatorcontrib><creatorcontrib>Linial, Nathan</creatorcontrib><creatorcontrib>Wigderson, Avi</creatorcontrib><title>Expander graphs and their applications</title><title>Bulletin (new series) of the American Mathematical Society</title><description>Expander graphs were first defined by Bassalygo and Pinsker, and their existence first proved by Pinsker in the early '70s. The property of being an expander seems significant in many of these mathematical, computational and physical contexts. It is not surprising that expanders are useful in the design and analysis of communication networks. What is less obvious is that expanders have surprising utility in other computational settings such as in the theory of error correcting codes and the theory of pseudorandomness. Here, Hoory et al discuss the result of their research about expander graphs and their applications.</description><subject>Graph representations</subject><subject>Graph theory</subject><subject>Mathematics</subject><issn>0273-0979</issn><issn>1088-9485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAQx4MoWKcfQSg--Ba9y6Vp8ihjTmHgg3sPaZO6jtnWpAP99nabeC_HwY__3f0Yu0V4QDDw-A6iJA6mNBwUB0ShuD5jGYLW3EhdnLPsH7lkVyltYSotMWP3i-_BdT7E_CO6YZPyacjHTWhj7oZh19ZubPsuXbOLxu1SuPnrM7Z-XqznL3z1tnydP614TaUZeSVk41EqT4SV8WgMeVF4RYWosKyUqYMqjCorib6mSgsFJF2QajoSKdCM3Z1ih9h_7UMa7bbfx27aaKcsTaRBTlBxgurYpxRDY4fYfrr4YxHsQYg9CrGHby0oexRiNf0C3iFRbA</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Hoory, Shlomo</creator><creator>Linial, Nathan</creator><creator>Wigderson, Avi</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>200610</creationdate><title>Expander graphs and their applications</title><author>Hoory, Shlomo ; Linial, Nathan ; Wigderson, Avi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-b24fd146d331b9d1993d25d6352b17b69ce65967b41dc3b826034ae4648513e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Graph representations</topic><topic>Graph theory</topic><topic>Mathematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Hoory, Shlomo</creatorcontrib><creatorcontrib>Linial, Nathan</creatorcontrib><creatorcontrib>Wigderson, Avi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Bulletin (new series) of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoory, Shlomo</au><au>Linial, Nathan</au><au>Wigderson, Avi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expander graphs and their applications</atitle><jtitle>Bulletin (new series) of the American Mathematical Society</jtitle><date>2006-10</date><risdate>2006</risdate><volume>43</volume><issue>4</issue><spage>439</spage><epage>562</epage><pages>439-562</pages><issn>0273-0979</issn><eissn>1088-9485</eissn><abstract>Expander graphs were first defined by Bassalygo and Pinsker, and their existence first proved by Pinsker in the early '70s. The property of being an expander seems significant in many of these mathematical, computational and physical contexts. It is not surprising that expanders are useful in the design and analysis of communication networks. What is less obvious is that expanders have surprising utility in other computational settings such as in the theory of error correcting codes and the theory of pseudorandomness. Here, Hoory et al discuss the result of their research about expander graphs and their applications.</abstract><cop>Providence</cop><pub>American Mathematical Society</pub><doi>10.1090/S0273-0979-06-01126-8</doi><tpages>124</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-0979 |
ispartof | Bulletin (new series) of the American Mathematical Society, 2006-10, Vol.43 (4), p.439-562 |
issn | 0273-0979 1088-9485 |
language | eng |
recordid | cdi_proquest_journals_199833804 |
source | American Mathematical Society Publications (Freely Accessible); Project Euclid Open Access; American Mathematical Society Publications |
subjects | Graph representations Graph theory Mathematics |
title | Expander graphs and their applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expander%20graphs%20and%20their%20applications&rft.jtitle=Bulletin%20(new%20series)%20of%20the%20American%20Mathematical%20Society&rft.au=Hoory,%20Shlomo&rft.date=2006-10&rft.volume=43&rft.issue=4&rft.spage=439&rft.epage=562&rft.pages=439-562&rft.issn=0273-0979&rft.eissn=1088-9485&rft_id=info:doi/10.1090/S0273-0979-06-01126-8&rft_dat=%3Cproquest_cross%3E1168768951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199833804&rft_id=info:pmid/&rfr_iscdi=true |