Scales of deformation partitioning during exhumation in a continental subduction channel: A petrofabric study of eclogites and gneisses from NW Spain (Malpica‐Tui Allochthonous Complex)

Deformation partitioning is identified as the fingerprint of late Palaeozoic continental subduction that affected various lithologies whose field relationship, thermobarometric and petrofabric features are closely related. Different modes of deformation partitioning can be identified within medium t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of metamorphic geology 2018-02, Vol.36 (2), p.225-254
Hauptverfasser: Puelles, P., Ábalos, B., Gil Ibarguchi, J. I., Rodríguez, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deformation partitioning is identified as the fingerprint of late Palaeozoic continental subduction that affected various lithologies whose field relationship, thermobarometric and petrofabric features are closely related. Different modes of deformation partitioning can be identified within medium temperature, high‐P eclogite lenses, between them and the host gneisses, and within the latter. Development of foliations and lineations with a coherent attitude in all these rocks and their related structural petrology demonstrate that eclogite enclosures and their country rocks underwent a common, pervasive deformational event. The published P–T stability fields of the eclogite phases that define the microscopic fabric are used to define the metamorphic conditions prevailing during the deformation event and relate it to the subduction process. The mineral equilibria of the gneisses (ortho‐ and paragneisses) fail to record the full range of those P–T conditions, but the field relationships show that eclogites were originally basic dykes emplaced in acid igneous rocks and demonstrate that the eclogites and gneisses shared a common tectonometamorphic evolution. Deformation partitioning within the latter occurred at variable scales and involved (1) meso macroscale preservation of virtually undeformed metagranite bodies, surrounded by (2) pervasively foliated and lineated gneisses, and (3) the simultaneous microscale operation in the latter of ductile and brittle–ductile mechanisms at conditions above 500°C and below 1.5 GPa. A subduction channel tectonic setting is proposed to explain the subduction of upper to mid‐crustal igneous rocks and exhumation subsequent to high‐P metamorphism. Its currently accessible dimensions, and its organization into several lithotectonic units mapped as nappes support tectonic amalgamation of units several km3 in volume. Maximum burial in the subduction channel likely reached depths shallower than the lithostatic pressure implied by geobarometric calculations, possibly conditioned by a sudden pressure drop during the initial retrogression stages accompanying exhumation.
ISSN:0263-4929
1525-1314
DOI:10.1111/jmg.12290