Scaling and intensification procedures for simulated moving-bed systems

Scaling rules and intensification procedures developed for single adsorption or chromatographic columns are extended for both linear and nonlinear isotherms to simulated moving‐bed (SMB) systems. The effects of particle diameter, column length, column diameter, switching time, flow rates, mass trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2003-11, Vol.49 (11), p.2810-2821
Hauptverfasser: Kim, Jeung Kun, Wankat, Phillip C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2821
container_issue 11
container_start_page 2810
container_title AIChE journal
container_volume 49
creator Kim, Jeung Kun
Wankat, Phillip C.
description Scaling rules and intensification procedures developed for single adsorption or chromatographic columns are extended for both linear and nonlinear isotherms to simulated moving‐bed (SMB) systems. The effects of particle diameter, column length, column diameter, switching time, flow rates, mass transfer, axial dispersion, and dead volume are studied in order to design a new SMB. Changes in the pressure drop, separation, and throughput can be changed as desired. Once an original design has been developed, the scaling procedure requires only algebraic manipulation. Simulations done by Aspen Chromatography showed that the new designs were remarkably good at producing the same product purities and pressure drops as the original design. Intensification is predicted when particle diameter is decreased. The limitations of the technique are that the number of columns per zone cannot be changed, the relative velocities in each zone are fixed, and for nonlinear systems the results apply only for the same feed concentration.
doi_str_mv 10.1002/aic.690491114
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199449028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>515857131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4154-9b18c0843d1df2240500945f54259b80fcd735139cfffc98d51eb6d91d5b29913</originalsourceid><addsrcrecordid>eNp9kM9LwzAcxYMoOKdH70Xw2JmkSZscx9A6GBN0KngJaX5IZtdq0qr7783YmJ48ffMNn_felwfAOYIjBCG-kk6Ncg4JRwiRAzBAlBQp5ZAeggGEEKXxAx2DkxCWccMFwwNQPihZu-Y1kY1OXNOZJjjrlOxc2yTvvlVG996ExLY-CW7V17IzOlm1n1GTVvEZ1qEzq3AKjqysgznbzSF4vLleTG7T2V05nYxnqSIxPeUVYgoykmmkLcYEUgg5oZYSTHnFoFW6yCjKuLLWKs40RabKNUeaVphzlA3BxdY33vbRm9CJZdv7JkYKxDkhHGIWoXQLKd-G4I0V796tpF8LBMWmKhGrEvuqIn-5M5Uh1mG9bJQLvyKKOWZswxVb7svVZv2_qRhPJ38Tdhe52Nb3Xin9m8iLrKDieV6K-Qst88XTvaDZDw3bh-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199449028</pqid></control><display><type>article</type><title>Scaling and intensification procedures for simulated moving-bed systems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Jeung Kun ; Wankat, Phillip C.</creator><creatorcontrib>Kim, Jeung Kun ; Wankat, Phillip C.</creatorcontrib><description>Scaling rules and intensification procedures developed for single adsorption or chromatographic columns are extended for both linear and nonlinear isotherms to simulated moving‐bed (SMB) systems. The effects of particle diameter, column length, column diameter, switching time, flow rates, mass transfer, axial dispersion, and dead volume are studied in order to design a new SMB. Changes in the pressure drop, separation, and throughput can be changed as desired. Once an original design has been developed, the scaling procedure requires only algebraic manipulation. Simulations done by Aspen Chromatography showed that the new designs were remarkably good at producing the same product purities and pressure drops as the original design. Intensification is predicted when particle diameter is decreased. The limitations of the technique are that the number of columns per zone cannot be changed, the relative velocities in each zone are fixed, and for nonlinear systems the results apply only for the same feed concentration.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690491114</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Analytical chemistry ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Exact sciences and technology ; Other chromatographic methods</subject><ispartof>AIChE journal, 2003-11, Vol.49 (11), p.2810-2821</ispartof><rights>Copyright © 2003 American Institute of Chemical Engineers (AIChE)</rights><rights>2004 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Nov 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4154-9b18c0843d1df2240500945f54259b80fcd735139cfffc98d51eb6d91d5b29913</citedby><cites>FETCH-LOGICAL-c4154-9b18c0843d1df2240500945f54259b80fcd735139cfffc98d51eb6d91d5b29913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690491114$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690491114$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15292884$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jeung Kun</creatorcontrib><creatorcontrib>Wankat, Phillip C.</creatorcontrib><title>Scaling and intensification procedures for simulated moving-bed systems</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Scaling rules and intensification procedures developed for single adsorption or chromatographic columns are extended for both linear and nonlinear isotherms to simulated moving‐bed (SMB) systems. The effects of particle diameter, column length, column diameter, switching time, flow rates, mass transfer, axial dispersion, and dead volume are studied in order to design a new SMB. Changes in the pressure drop, separation, and throughput can be changed as desired. Once an original design has been developed, the scaling procedure requires only algebraic manipulation. Simulations done by Aspen Chromatography showed that the new designs were remarkably good at producing the same product purities and pressure drops as the original design. Intensification is predicted when particle diameter is decreased. The limitations of the technique are that the number of columns per zone cannot be changed, the relative velocities in each zone are fixed, and for nonlinear systems the results apply only for the same feed concentration.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Exact sciences and technology</subject><subject>Other chromatographic methods</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM9LwzAcxYMoOKdH70Xw2JmkSZscx9A6GBN0KngJaX5IZtdq0qr7783YmJ48ffMNn_felwfAOYIjBCG-kk6Ncg4JRwiRAzBAlBQp5ZAeggGEEKXxAx2DkxCWccMFwwNQPihZu-Y1kY1OXNOZJjjrlOxc2yTvvlVG996ExLY-CW7V17IzOlm1n1GTVvEZ1qEzq3AKjqysgznbzSF4vLleTG7T2V05nYxnqSIxPeUVYgoykmmkLcYEUgg5oZYSTHnFoFW6yCjKuLLWKs40RabKNUeaVphzlA3BxdY33vbRm9CJZdv7JkYKxDkhHGIWoXQLKd-G4I0V796tpF8LBMWmKhGrEvuqIn-5M5Uh1mG9bJQLvyKKOWZswxVb7svVZv2_qRhPJ38Tdhe52Nb3Xin9m8iLrKDieV6K-Qst88XTvaDZDw3bh-M</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Kim, Jeung Kun</creator><creator>Wankat, Phillip C.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>200311</creationdate><title>Scaling and intensification procedures for simulated moving-bed systems</title><author>Kim, Jeung Kun ; Wankat, Phillip C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4154-9b18c0843d1df2240500945f54259b80fcd735139cfffc98d51eb6d91d5b29913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Exact sciences and technology</topic><topic>Other chromatographic methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jeung Kun</creatorcontrib><creatorcontrib>Wankat, Phillip C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jeung Kun</au><au>Wankat, Phillip C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling and intensification procedures for simulated moving-bed systems</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2003-11</date><risdate>2003</risdate><volume>49</volume><issue>11</issue><spage>2810</spage><epage>2821</epage><pages>2810-2821</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Scaling rules and intensification procedures developed for single adsorption or chromatographic columns are extended for both linear and nonlinear isotherms to simulated moving‐bed (SMB) systems. The effects of particle diameter, column length, column diameter, switching time, flow rates, mass transfer, axial dispersion, and dead volume are studied in order to design a new SMB. Changes in the pressure drop, separation, and throughput can be changed as desired. Once an original design has been developed, the scaling procedure requires only algebraic manipulation. Simulations done by Aspen Chromatography showed that the new designs were remarkably good at producing the same product purities and pressure drops as the original design. Intensification is predicted when particle diameter is decreased. The limitations of the technique are that the number of columns per zone cannot be changed, the relative velocities in each zone are fixed, and for nonlinear systems the results apply only for the same feed concentration.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.690491114</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2003-11, Vol.49 (11), p.2810-2821
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_199449028
source Wiley Online Library Journals Frontfile Complete
subjects Analytical chemistry
Chemistry
Chromatographic methods and physical methods associated with chromatography
Exact sciences and technology
Other chromatographic methods
title Scaling and intensification procedures for simulated moving-bed systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20and%20intensification%20procedures%20for%20simulated%20moving-bed%20systems&rft.jtitle=AIChE%20journal&rft.au=Kim,%20Jeung%20Kun&rft.date=2003-11&rft.volume=49&rft.issue=11&rft.spage=2810&rft.epage=2821&rft.pages=2810-2821&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690491114&rft_dat=%3Cproquest_cross%3E515857131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199449028&rft_id=info:pmid/&rfr_iscdi=true