Structural design for on-line process optimization: I. Dynamic economics of MPC
The structural design of integrated online process optimization and regulatory control systems based on an economic analysis of different structures is addressed. The regulatory control layer is assumed to be implemented using model predictive control (MPC) techniques. An approach to the analysis of...
Gespeichert in:
Veröffentlicht in: | AIChE journal 1999-05, Vol.45 (5), p.1018-1029 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1029 |
---|---|
container_issue | 5 |
container_start_page | 1018 |
container_title | AIChE journal |
container_volume | 45 |
creator | Loeblein, C. Perkins, J. D. |
description | The structural design of integrated online process optimization and regulatory control systems based on an economic analysis of different structures is addressed. The regulatory control layer is assumed to be implemented using model predictive control (MPC) techniques. An approach to the analysis of the dynamic economics of MPC is presented which uses the state‐space formulation as the plant model. Output feedback is performed in the framework of linear quadratic filtering theory using a Kalman filter. Using the unconstrained model predictive control law, the variance of the constrained variables of the closed‐loop system subject to stochastic disturbances is analyzed. Based on the variance of the constrained variables, the amount of necessary backoff from the constraints due to regulatory disturbances is calculated and the dynamic economics are established. The dynamic economics of the model predictive regulatory control system are incorporated into the method of the average deviation from optimum analyzing the economic performance of an online optimization system. Thus, different structures of the integrated system of online optimization and MPC‐based regulatory control can be analyzed in terms of their economic performance, and the necessary structural design decisions can be taken. |
doi_str_mv | 10.1002/aic.690450511 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199442409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>43799009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3771-84c82684ebc1f9742ab167fa7a35f60ac66c16e6c4190ef7544f7007411aa82b3</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujiYgevTfG62Jntx-73ggqkqCYiPHYlNqa4rLFdonir7cGgp48zUeeeWfmRegUSA8IyS-U0z1eEcoIA9hDHWBUZKwibB91CCGQpQYcoqMY56nKRZl30OSxDSvdroKq8YuJ7rXB1gfsm6x2jcHL4LWJEftl6xbuS7XON5d41MNX60YtnMZG-8anJCEW3z0MjtGBVXU0J9vYRU8319PBbTaeDEeD_jjThRCQlVSXOS-pmWmwlaC5mgEXVglVMMuJ0pxr4IZrChUxVjBKrSBEUAClynxWdNHZRjdd-L4ysZVzvwpNWimhqijNKakSlG0gHXyMwVi5DG6hwloCkT-WyWSZ3FmW-POtqIpa1TaoRrv4OyTKoixpwsQG-3C1Wf-vKfujwd8F24NcbM3nblKFN8lFIZh8vh_Kq_QtVFMqWfENB8OI4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199442409</pqid></control><display><type>article</type><title>Structural design for on-line process optimization: I. Dynamic economics of MPC</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Loeblein, C. ; Perkins, J. D.</creator><creatorcontrib>Loeblein, C. ; Perkins, J. D.</creatorcontrib><description>The structural design of integrated online process optimization and regulatory control systems based on an economic analysis of different structures is addressed. The regulatory control layer is assumed to be implemented using model predictive control (MPC) techniques. An approach to the analysis of the dynamic economics of MPC is presented which uses the state‐space formulation as the plant model. Output feedback is performed in the framework of linear quadratic filtering theory using a Kalman filter. Using the unconstrained model predictive control law, the variance of the constrained variables of the closed‐loop system subject to stochastic disturbances is analyzed. Based on the variance of the constrained variables, the amount of necessary backoff from the constraints due to regulatory disturbances is calculated and the dynamic economics are established. The dynamic economics of the model predictive regulatory control system are incorporated into the method of the average deviation from optimum analyzing the economic performance of an online optimization system. Thus, different structures of the integrated system of online optimization and MPC‐based regulatory control can be analyzed in terms of their economic performance, and the necessary structural design decisions can be taken.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690450511</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization ; Applied sciences ; Chemical engineering ; Exact sciences and technology</subject><ispartof>AIChE journal, 1999-05, Vol.45 (5), p.1018-1029</ispartof><rights>Copyright © 1999 American Institute of Chemical Engineers (AIChE)</rights><rights>1999 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers May 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3771-84c82684ebc1f9742ab167fa7a35f60ac66c16e6c4190ef7544f7007411aa82b3</citedby><cites>FETCH-LOGICAL-c3771-84c82684ebc1f9742ab167fa7a35f60ac66c16e6c4190ef7544f7007411aa82b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690450511$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690450511$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1783884$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Loeblein, C.</creatorcontrib><creatorcontrib>Perkins, J. D.</creatorcontrib><title>Structural design for on-line process optimization: I. Dynamic economics of MPC</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>The structural design of integrated online process optimization and regulatory control systems based on an economic analysis of different structures is addressed. The regulatory control layer is assumed to be implemented using model predictive control (MPC) techniques. An approach to the analysis of the dynamic economics of MPC is presented which uses the state‐space formulation as the plant model. Output feedback is performed in the framework of linear quadratic filtering theory using a Kalman filter. Using the unconstrained model predictive control law, the variance of the constrained variables of the closed‐loop system subject to stochastic disturbances is analyzed. Based on the variance of the constrained variables, the amount of necessary backoff from the constraints due to regulatory disturbances is calculated and the dynamic economics are established. The dynamic economics of the model predictive regulatory control system are incorporated into the method of the average deviation from optimum analyzing the economic performance of an online optimization system. Thus, different structures of the integrated system of online optimization and MPC‐based regulatory control can be analyzed in terms of their economic performance, and the necessary structural design decisions can be taken.</description><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1PAjEQhhujiYgevTfG62Jntx-73ggqkqCYiPHYlNqa4rLFdonir7cGgp48zUeeeWfmRegUSA8IyS-U0z1eEcoIA9hDHWBUZKwibB91CCGQpQYcoqMY56nKRZl30OSxDSvdroKq8YuJ7rXB1gfsm6x2jcHL4LWJEftl6xbuS7XON5d41MNX60YtnMZG-8anJCEW3z0MjtGBVXU0J9vYRU8319PBbTaeDEeD_jjThRCQlVSXOS-pmWmwlaC5mgEXVglVMMuJ0pxr4IZrChUxVjBKrSBEUAClynxWdNHZRjdd-L4ysZVzvwpNWimhqijNKakSlG0gHXyMwVi5DG6hwloCkT-WyWSZ3FmW-POtqIpa1TaoRrv4OyTKoixpwsQG-3C1Wf-vKfujwd8F24NcbM3nblKFN8lFIZh8vh_Kq_QtVFMqWfENB8OI4A</recordid><startdate>199905</startdate><enddate>199905</enddate><creator>Loeblein, C.</creator><creator>Perkins, J. D.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>199905</creationdate><title>Structural design for on-line process optimization: I. Dynamic economics of MPC</title><author>Loeblein, C. ; Perkins, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3771-84c82684ebc1f9742ab167fa7a35f60ac66c16e6c4190ef7544f7007411aa82b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loeblein, C.</creatorcontrib><creatorcontrib>Perkins, J. D.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loeblein, C.</au><au>Perkins, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural design for on-line process optimization: I. Dynamic economics of MPC</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>1999-05</date><risdate>1999</risdate><volume>45</volume><issue>5</issue><spage>1018</spage><epage>1029</epage><pages>1018-1029</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>The structural design of integrated online process optimization and regulatory control systems based on an economic analysis of different structures is addressed. The regulatory control layer is assumed to be implemented using model predictive control (MPC) techniques. An approach to the analysis of the dynamic economics of MPC is presented which uses the state‐space formulation as the plant model. Output feedback is performed in the framework of linear quadratic filtering theory using a Kalman filter. Using the unconstrained model predictive control law, the variance of the constrained variables of the closed‐loop system subject to stochastic disturbances is analyzed. Based on the variance of the constrained variables, the amount of necessary backoff from the constraints due to regulatory disturbances is calculated and the dynamic economics are established. The dynamic economics of the model predictive regulatory control system are incorporated into the method of the average deviation from optimum analyzing the economic performance of an online optimization system. Thus, different structures of the integrated system of online optimization and MPC‐based regulatory control can be analyzed in terms of their economic performance, and the necessary structural design decisions can be taken.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.690450511</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 1999-05, Vol.45 (5), p.1018-1029 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_199442409 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization Applied sciences Chemical engineering Exact sciences and technology |
title | Structural design for on-line process optimization: I. Dynamic economics of MPC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20design%20for%20on-line%20process%20optimization:%20I.%20Dynamic%20economics%20of%20MPC&rft.jtitle=AIChE%20journal&rft.au=Loeblein,%20C.&rft.date=1999-05&rft.volume=45&rft.issue=5&rft.spage=1018&rft.epage=1029&rft.pages=1018-1029&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690450511&rft_dat=%3Cproquest_cross%3E43799009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199442409&rft_id=info:pmid/&rfr_iscdi=true |