Poly(ethylene-co-BMA) via dual concurrent ATRP–RAFT and its thermokinetic study

Well-defined copolymers of ethylene and butyl methacrylate (BMA) (poly(ethylene- co -BMA)) with narrow molecular weight distribution were synthesized via dual concurrent atom transfer radical polymerization (ATRP) and reversible addition–fragmentation chain transfer (RAFT) polymerization using 4-cya...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2018-02, Vol.131 (2), p.1517-1526
Hauptverfasser: Saikia, Maitrayee, Borphukan, Somip, Baruah, Urmilla, Gautam, Arvind, Saikia, Prakash J., Baruah, Shashi D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1526
container_issue 2
container_start_page 1517
container_title Journal of thermal analysis and calorimetry
container_volume 131
creator Saikia, Maitrayee
Borphukan, Somip
Baruah, Urmilla
Gautam, Arvind
Saikia, Prakash J.
Baruah, Shashi D.
description Well-defined copolymers of ethylene and butyl methacrylate (BMA) (poly(ethylene- co -BMA)) with narrow molecular weight distribution were synthesized via dual concurrent atom transfer radical polymerization (ATRP) and reversible addition–fragmentation chain transfer (RAFT) polymerization using 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid as an alkyl pseudo-halide initiator, ascorbic acid/FeCl 3 /2,2′ bipyridine as the ATRP catalyst system and ethyl-2-bromo-isobutyrate as co-initiator in N, N′-dimethyl formamide at 100 °C. From size exclusion chromatography result, controlled molecular weight with narrow molecular weight distributions of poly(ethylene- co -BMA) was obtained in every case. The experimental results indicated that dual concurrent ATRP–RAFT polymerization is more successful over free radical or RAFT polymerization in terms of controlling molecular weight and polydispersity. X-ray diffraction analysis demonstrated the amorphous behaviour of poly(ethylene- co -BMA) while thermogravimetric analysis reveals that the main decomposition of poly(ethylene- co -BMA) occurs in the range 300–420 °C. The multivariate nonlinear regression analysis was performed to establish the mechanism and kinetic model and found that n-dimensional Avrami–Erofeev (An) mechanism was responsible for the decomposition of the synthesized poly(ethylene- co -BMA). The apparent activation energy ( E a ) of decomposition of the synthesized copolymer was found to be 211.88 kJ mol −1 .
doi_str_mv 10.1007/s10973-017-6536-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1994389366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A526492997</galeid><sourcerecordid>A526492997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-6eab8adcfa26529d09e8bb755e9490b0359d6d569958c90aad8d3e3479e30c0a3</originalsourceid><addsrcrecordid>eNp1kM1O3DAQx62qlUq3PAC3SL2Ug-k4XjuZY4r4kqigaDlbXnsCodkEbAdpb30H3pAnwSgcuKA5zGj0_8_Hj7E9AQcCoPoVBWAlOYiKayU1V5_YjlB1zUss9edcy1xroeAr-xbjHQAggthhfy_HfvuT0u22p4G4G_nvP81-8djZwk-2L9w4uCkEGlLRrK4un_8_XTXHq8IOvuhSLNIthc34rxsoda6IafLb7-xLa_tIu295wa6Pj1aHp_z84uTssDnnTmKZuCa7rq13rS21KtEDUr1eV0oRLhHWIBV67ZVGVLVDsNbXXpJcVkgSHFi5YD_mufdhfJgoJnM3TmHIK41AXMoapdZZdTCrbmxPphvaMQXrcnjadPk5arvcb1Spl1hiRrhgYja4MMYYqDX3odvYsDUCzCtqM6M2GbV5RW1U9pSzJ2btcEPh3Skfml4ADxuAuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1994389366</pqid></control><display><type>article</type><title>Poly(ethylene-co-BMA) via dual concurrent ATRP–RAFT and its thermokinetic study</title><source>SpringerLink Journals - AutoHoldings</source><creator>Saikia, Maitrayee ; Borphukan, Somip ; Baruah, Urmilla ; Gautam, Arvind ; Saikia, Prakash J. ; Baruah, Shashi D.</creator><creatorcontrib>Saikia, Maitrayee ; Borphukan, Somip ; Baruah, Urmilla ; Gautam, Arvind ; Saikia, Prakash J. ; Baruah, Shashi D.</creatorcontrib><description>Well-defined copolymers of ethylene and butyl methacrylate (BMA) (poly(ethylene- co -BMA)) with narrow molecular weight distribution were synthesized via dual concurrent atom transfer radical polymerization (ATRP) and reversible addition–fragmentation chain transfer (RAFT) polymerization using 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid as an alkyl pseudo-halide initiator, ascorbic acid/FeCl 3 /2,2′ bipyridine as the ATRP catalyst system and ethyl-2-bromo-isobutyrate as co-initiator in N, N′-dimethyl formamide at 100 °C. From size exclusion chromatography result, controlled molecular weight with narrow molecular weight distributions of poly(ethylene- co -BMA) was obtained in every case. The experimental results indicated that dual concurrent ATRP–RAFT polymerization is more successful over free radical or RAFT polymerization in terms of controlling molecular weight and polydispersity. X-ray diffraction analysis demonstrated the amorphous behaviour of poly(ethylene- co -BMA) while thermogravimetric analysis reveals that the main decomposition of poly(ethylene- co -BMA) occurs in the range 300–420 °C. The multivariate nonlinear regression analysis was performed to establish the mechanism and kinetic model and found that n-dimensional Avrami–Erofeev (An) mechanism was responsible for the decomposition of the synthesized poly(ethylene- co -BMA). The apparent activation energy ( E a ) of decomposition of the synthesized copolymer was found to be 211.88 kJ mol −1 .</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-017-6536-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Activation energy ; Addition polymerization ; Alkyl groups ; Analytical Chemistry ; Ascorbic acid ; Chain transfer ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Copolymers ; Cytokinins ; Decomposition ; Dimethylformamide ; Ethylene ; Free radical polymerization ; Inorganic Chemistry ; Iron chlorides ; Measurement Science and Instrumentation ; Molecular weight ; Molecular weight distribution ; Nitriles ; Nonlinear analysis ; Physical Chemistry ; Polydispersity ; Polymer Sciences ; Polymerization ; Regression analysis ; Size exclusion chromatography ; Thermogravimetric analysis</subject><ispartof>Journal of thermal analysis and calorimetry, 2018-02, Vol.131 (2), p.1517-1526</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-6eab8adcfa26529d09e8bb755e9490b0359d6d569958c90aad8d3e3479e30c0a3</citedby><cites>FETCH-LOGICAL-c392t-6eab8adcfa26529d09e8bb755e9490b0359d6d569958c90aad8d3e3479e30c0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-017-6536-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-017-6536-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Saikia, Maitrayee</creatorcontrib><creatorcontrib>Borphukan, Somip</creatorcontrib><creatorcontrib>Baruah, Urmilla</creatorcontrib><creatorcontrib>Gautam, Arvind</creatorcontrib><creatorcontrib>Saikia, Prakash J.</creatorcontrib><creatorcontrib>Baruah, Shashi D.</creatorcontrib><title>Poly(ethylene-co-BMA) via dual concurrent ATRP–RAFT and its thermokinetic study</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Well-defined copolymers of ethylene and butyl methacrylate (BMA) (poly(ethylene- co -BMA)) with narrow molecular weight distribution were synthesized via dual concurrent atom transfer radical polymerization (ATRP) and reversible addition–fragmentation chain transfer (RAFT) polymerization using 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid as an alkyl pseudo-halide initiator, ascorbic acid/FeCl 3 /2,2′ bipyridine as the ATRP catalyst system and ethyl-2-bromo-isobutyrate as co-initiator in N, N′-dimethyl formamide at 100 °C. From size exclusion chromatography result, controlled molecular weight with narrow molecular weight distributions of poly(ethylene- co -BMA) was obtained in every case. The experimental results indicated that dual concurrent ATRP–RAFT polymerization is more successful over free radical or RAFT polymerization in terms of controlling molecular weight and polydispersity. X-ray diffraction analysis demonstrated the amorphous behaviour of poly(ethylene- co -BMA) while thermogravimetric analysis reveals that the main decomposition of poly(ethylene- co -BMA) occurs in the range 300–420 °C. The multivariate nonlinear regression analysis was performed to establish the mechanism and kinetic model and found that n-dimensional Avrami–Erofeev (An) mechanism was responsible for the decomposition of the synthesized poly(ethylene- co -BMA). The apparent activation energy ( E a ) of decomposition of the synthesized copolymer was found to be 211.88 kJ mol −1 .</description><subject>Activation energy</subject><subject>Addition polymerization</subject><subject>Alkyl groups</subject><subject>Analytical Chemistry</subject><subject>Ascorbic acid</subject><subject>Chain transfer</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Copolymers</subject><subject>Cytokinins</subject><subject>Decomposition</subject><subject>Dimethylformamide</subject><subject>Ethylene</subject><subject>Free radical polymerization</subject><subject>Inorganic Chemistry</subject><subject>Iron chlorides</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular weight</subject><subject>Molecular weight distribution</subject><subject>Nitriles</subject><subject>Nonlinear analysis</subject><subject>Physical Chemistry</subject><subject>Polydispersity</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Regression analysis</subject><subject>Size exclusion chromatography</subject><subject>Thermogravimetric analysis</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1O3DAQx62qlUq3PAC3SL2Ug-k4XjuZY4r4kqigaDlbXnsCodkEbAdpb30H3pAnwSgcuKA5zGj0_8_Hj7E9AQcCoPoVBWAlOYiKayU1V5_YjlB1zUss9edcy1xroeAr-xbjHQAggthhfy_HfvuT0u22p4G4G_nvP81-8djZwk-2L9w4uCkEGlLRrK4un_8_XTXHq8IOvuhSLNIthc34rxsoda6IafLb7-xLa_tIu295wa6Pj1aHp_z84uTssDnnTmKZuCa7rq13rS21KtEDUr1eV0oRLhHWIBV67ZVGVLVDsNbXXpJcVkgSHFi5YD_mufdhfJgoJnM3TmHIK41AXMoapdZZdTCrbmxPphvaMQXrcnjadPk5arvcb1Spl1hiRrhgYja4MMYYqDX3odvYsDUCzCtqM6M2GbV5RW1U9pSzJ2btcEPh3Skfml4ADxuAuA</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Saikia, Maitrayee</creator><creator>Borphukan, Somip</creator><creator>Baruah, Urmilla</creator><creator>Gautam, Arvind</creator><creator>Saikia, Prakash J.</creator><creator>Baruah, Shashi D.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>Poly(ethylene-co-BMA) via dual concurrent ATRP–RAFT and its thermokinetic study</title><author>Saikia, Maitrayee ; Borphukan, Somip ; Baruah, Urmilla ; Gautam, Arvind ; Saikia, Prakash J. ; Baruah, Shashi D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-6eab8adcfa26529d09e8bb755e9490b0359d6d569958c90aad8d3e3479e30c0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation energy</topic><topic>Addition polymerization</topic><topic>Alkyl groups</topic><topic>Analytical Chemistry</topic><topic>Ascorbic acid</topic><topic>Chain transfer</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Copolymers</topic><topic>Cytokinins</topic><topic>Decomposition</topic><topic>Dimethylformamide</topic><topic>Ethylene</topic><topic>Free radical polymerization</topic><topic>Inorganic Chemistry</topic><topic>Iron chlorides</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular weight</topic><topic>Molecular weight distribution</topic><topic>Nitriles</topic><topic>Nonlinear analysis</topic><topic>Physical Chemistry</topic><topic>Polydispersity</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Regression analysis</topic><topic>Size exclusion chromatography</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saikia, Maitrayee</creatorcontrib><creatorcontrib>Borphukan, Somip</creatorcontrib><creatorcontrib>Baruah, Urmilla</creatorcontrib><creatorcontrib>Gautam, Arvind</creatorcontrib><creatorcontrib>Saikia, Prakash J.</creatorcontrib><creatorcontrib>Baruah, Shashi D.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saikia, Maitrayee</au><au>Borphukan, Somip</au><au>Baruah, Urmilla</au><au>Gautam, Arvind</au><au>Saikia, Prakash J.</au><au>Baruah, Shashi D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(ethylene-co-BMA) via dual concurrent ATRP–RAFT and its thermokinetic study</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>131</volume><issue>2</issue><spage>1517</spage><epage>1526</epage><pages>1517-1526</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Well-defined copolymers of ethylene and butyl methacrylate (BMA) (poly(ethylene- co -BMA)) with narrow molecular weight distribution were synthesized via dual concurrent atom transfer radical polymerization (ATRP) and reversible addition–fragmentation chain transfer (RAFT) polymerization using 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid as an alkyl pseudo-halide initiator, ascorbic acid/FeCl 3 /2,2′ bipyridine as the ATRP catalyst system and ethyl-2-bromo-isobutyrate as co-initiator in N, N′-dimethyl formamide at 100 °C. From size exclusion chromatography result, controlled molecular weight with narrow molecular weight distributions of poly(ethylene- co -BMA) was obtained in every case. The experimental results indicated that dual concurrent ATRP–RAFT polymerization is more successful over free radical or RAFT polymerization in terms of controlling molecular weight and polydispersity. X-ray diffraction analysis demonstrated the amorphous behaviour of poly(ethylene- co -BMA) while thermogravimetric analysis reveals that the main decomposition of poly(ethylene- co -BMA) occurs in the range 300–420 °C. The multivariate nonlinear regression analysis was performed to establish the mechanism and kinetic model and found that n-dimensional Avrami–Erofeev (An) mechanism was responsible for the decomposition of the synthesized poly(ethylene- co -BMA). The apparent activation energy ( E a ) of decomposition of the synthesized copolymer was found to be 211.88 kJ mol −1 .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10973-017-6536-5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2018-02, Vol.131 (2), p.1517-1526
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_1994389366
source SpringerLink Journals - AutoHoldings
subjects Activation energy
Addition polymerization
Alkyl groups
Analytical Chemistry
Ascorbic acid
Chain transfer
Chemical synthesis
Chemistry
Chemistry and Materials Science
Copolymers
Cytokinins
Decomposition
Dimethylformamide
Ethylene
Free radical polymerization
Inorganic Chemistry
Iron chlorides
Measurement Science and Instrumentation
Molecular weight
Molecular weight distribution
Nitriles
Nonlinear analysis
Physical Chemistry
Polydispersity
Polymer Sciences
Polymerization
Regression analysis
Size exclusion chromatography
Thermogravimetric analysis
title Poly(ethylene-co-BMA) via dual concurrent ATRP–RAFT and its thermokinetic study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(ethylene-co-BMA)%20via%20dual%20concurrent%20ATRP%E2%80%93RAFT%20and%20its%20thermokinetic%20study&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Saikia,%20Maitrayee&rft.date=2018-02-01&rft.volume=131&rft.issue=2&rft.spage=1517&rft.epage=1526&rft.pages=1517-1526&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-017-6536-5&rft_dat=%3Cgale_proqu%3EA526492997%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1994389366&rft_id=info:pmid/&rft_galeid=A526492997&rfr_iscdi=true