From Surface ZrO2 Coating to Bulk Zr Doping by High Temperature Annealing of Nickel‐Rich Lithiated Oxides and Their Enhanced Electrochemical Performance in Lithium Ion Batteries

One of the major hurdles of Ni‐rich cathode materials Li1+x(NixCozMnz)wO2, y > 0.5 for lithium‐ion batteries is their low cycling stability especially for compositions with Ni ≥ 60%, which suffer from severe capacity fading and impedance increase during cycling at elevated temperatures (e.g., 45...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2018-02, Vol.8 (4), p.n/a
Hauptverfasser: Schipper, Florian, Bouzaglo, Hana, Dixit, Mudit, Erickson, Evan M., Weigel, Tina, Talianker, Michael, Grinblat, Judith, Burstein, Larisa, Schmidt, Michael, Lampert, Jordan, Erk, Christoph, Markovsky, Boris, Major, Dan Thomas, Aurbach, Doron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Advanced energy materials
container_volume 8
creator Schipper, Florian
Bouzaglo, Hana
Dixit, Mudit
Erickson, Evan M.
Weigel, Tina
Talianker, Michael
Grinblat, Judith
Burstein, Larisa
Schmidt, Michael
Lampert, Jordan
Erk, Christoph
Markovsky, Boris
Major, Dan Thomas
Aurbach, Doron
description One of the major hurdles of Ni‐rich cathode materials Li1+x(NixCozMnz)wO2, y > 0.5 for lithium‐ion batteries is their low cycling stability especially for compositions with Ni ≥ 60%, which suffer from severe capacity fading and impedance increase during cycling at elevated temperatures (e.g., 45 °C). Two promising surface and structural modifications of these materials to alleviate the above drawback are (1) coatings by electrochemically inert inorganic compounds (e.g., ZrO2) or (2) lattice doping by cations like Zr4+, Al3+, Mg2+, etc. This paper demonstrates the enhanced electrochemical behavior of Ni‐rich material LiNi0.8Co0.1Mn0.1O2 (NCM811) coated with a thin ZrO2 layer. The coating is produced by an easy and scalable wet chemical approach followed by annealing the material at ≥700 °C under oxygen that results in Zr doping. It is established that some ZrO2 remains even after annealing at ≥800 °C as a surface layer on NCM811. The main finding of this work is the enhanced cycling stability and lower impedance of the coated/doped NCM811 that can be attributed to a synergetic effect of the ZrO2 coating in combination with a zirconium doping. Surface ZrO2 coated or doped high capacity nickel‐rich layered oxides for lithium ion batteries can be prepared by a simple wet chemical process. Depending on the annealing temperature, a ZrO2 coating or a Zr doping is obtained. Zr‐doped LiNi0.8Co0.1Mn0.1O2 (NCM811) demonstrates much lower capacity fade, lower impedance, higher rate capability, and a lower voltage hysteresis over the bare material.
doi_str_mv 10.1002/aenm.201701682
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1994017454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1994017454</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2722-4f8a12e35e2a20b4a468229a93c347cd75750abb087115737a798cc0b1c896ab3</originalsourceid><addsrcrecordid>eNo9Uctu20AMFIoGSJDm2jOBnp3uS17p6LjOA3DjoHUvuQjUmrI2kXbd1QqJb_mE_Ev_qF9SCS7MC8kZYgjMJMlnzi45Y-IrkmsvBeOa8WkmPiRnfMrVZJop9vE4S3GaXHTdExtK5ZxJeZb8uQ6-hZ99qNAQPIaVgLnHaN0WooervnkeQPjmdyNS7uHWbmtYU7ujgLEPBDPnCJuR9RXcW_NMzd-39x_W1LC0sbYYaQOrV7uhDtBtYF2TDbBwNTozMIuGTAze1NRagw08UKh8aEcSrDtI9C3ceQdXGCMFS92n5KTCpqOL__08-XW9WM9vJ8vVzd18tpxshRZioqoMuSCZkkDBSoVqcEbkmEsjlTYbneqUYVmyTHOeaqlR55kxrOQmy6dYyvPky0F3F_zvnrpYPPk-uOFlwfNcDWarVA1X-eHqxTa0L3bBthj2BWfFGEwxBlMcgylmi_vvx03-A7sqhdM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1994017454</pqid></control><display><type>article</type><title>From Surface ZrO2 Coating to Bulk Zr Doping by High Temperature Annealing of Nickel‐Rich Lithiated Oxides and Their Enhanced Electrochemical Performance in Lithium Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schipper, Florian ; Bouzaglo, Hana ; Dixit, Mudit ; Erickson, Evan M. ; Weigel, Tina ; Talianker, Michael ; Grinblat, Judith ; Burstein, Larisa ; Schmidt, Michael ; Lampert, Jordan ; Erk, Christoph ; Markovsky, Boris ; Major, Dan Thomas ; Aurbach, Doron</creator><creatorcontrib>Schipper, Florian ; Bouzaglo, Hana ; Dixit, Mudit ; Erickson, Evan M. ; Weigel, Tina ; Talianker, Michael ; Grinblat, Judith ; Burstein, Larisa ; Schmidt, Michael ; Lampert, Jordan ; Erk, Christoph ; Markovsky, Boris ; Major, Dan Thomas ; Aurbach, Doron</creatorcontrib><description>One of the major hurdles of Ni‐rich cathode materials Li1+x(NixCozMnz)wO2, y &gt; 0.5 for lithium‐ion batteries is their low cycling stability especially for compositions with Ni ≥ 60%, which suffer from severe capacity fading and impedance increase during cycling at elevated temperatures (e.g., 45 °C). Two promising surface and structural modifications of these materials to alleviate the above drawback are (1) coatings by electrochemically inert inorganic compounds (e.g., ZrO2) or (2) lattice doping by cations like Zr4+, Al3+, Mg2+, etc. This paper demonstrates the enhanced electrochemical behavior of Ni‐rich material LiNi0.8Co0.1Mn0.1O2 (NCM811) coated with a thin ZrO2 layer. The coating is produced by an easy and scalable wet chemical approach followed by annealing the material at ≥700 °C under oxygen that results in Zr doping. It is established that some ZrO2 remains even after annealing at ≥800 °C as a surface layer on NCM811. The main finding of this work is the enhanced cycling stability and lower impedance of the coated/doped NCM811 that can be attributed to a synergetic effect of the ZrO2 coating in combination with a zirconium doping. Surface ZrO2 coated or doped high capacity nickel‐rich layered oxides for lithium ion batteries can be prepared by a simple wet chemical process. Depending on the annealing temperature, a ZrO2 coating or a Zr doping is obtained. Zr‐doped LiNi0.8Co0.1Mn0.1O2 (NCM811) demonstrates much lower capacity fade, lower impedance, higher rate capability, and a lower voltage hysteresis over the bare material.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201701682</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Annealing ; cathodes ; Coating effects ; Cycles ; Doping ; Electrochemical analysis ; Electrode materials ; High temperature ; Impedance ; Inorganic compounds ; Lithium ; Lithium-ion batteries ; Nickel ; nickel‐rich materials ; Rechargeable batteries ; Stability ; zirconia coating ; Zirconium ; Zirconium dioxide ; zirconium doping</subject><ispartof>Advanced energy materials, 2018-02, Vol.8 (4), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9456-7806 ; 0000-0002-0661-3532 ; 0000-0002-9231-0676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201701682$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201701682$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Schipper, Florian</creatorcontrib><creatorcontrib>Bouzaglo, Hana</creatorcontrib><creatorcontrib>Dixit, Mudit</creatorcontrib><creatorcontrib>Erickson, Evan M.</creatorcontrib><creatorcontrib>Weigel, Tina</creatorcontrib><creatorcontrib>Talianker, Michael</creatorcontrib><creatorcontrib>Grinblat, Judith</creatorcontrib><creatorcontrib>Burstein, Larisa</creatorcontrib><creatorcontrib>Schmidt, Michael</creatorcontrib><creatorcontrib>Lampert, Jordan</creatorcontrib><creatorcontrib>Erk, Christoph</creatorcontrib><creatorcontrib>Markovsky, Boris</creatorcontrib><creatorcontrib>Major, Dan Thomas</creatorcontrib><creatorcontrib>Aurbach, Doron</creatorcontrib><title>From Surface ZrO2 Coating to Bulk Zr Doping by High Temperature Annealing of Nickel‐Rich Lithiated Oxides and Their Enhanced Electrochemical Performance in Lithium Ion Batteries</title><title>Advanced energy materials</title><description>One of the major hurdles of Ni‐rich cathode materials Li1+x(NixCozMnz)wO2, y &gt; 0.5 for lithium‐ion batteries is their low cycling stability especially for compositions with Ni ≥ 60%, which suffer from severe capacity fading and impedance increase during cycling at elevated temperatures (e.g., 45 °C). Two promising surface and structural modifications of these materials to alleviate the above drawback are (1) coatings by electrochemically inert inorganic compounds (e.g., ZrO2) or (2) lattice doping by cations like Zr4+, Al3+, Mg2+, etc. This paper demonstrates the enhanced electrochemical behavior of Ni‐rich material LiNi0.8Co0.1Mn0.1O2 (NCM811) coated with a thin ZrO2 layer. The coating is produced by an easy and scalable wet chemical approach followed by annealing the material at ≥700 °C under oxygen that results in Zr doping. It is established that some ZrO2 remains even after annealing at ≥800 °C as a surface layer on NCM811. The main finding of this work is the enhanced cycling stability and lower impedance of the coated/doped NCM811 that can be attributed to a synergetic effect of the ZrO2 coating in combination with a zirconium doping. Surface ZrO2 coated or doped high capacity nickel‐rich layered oxides for lithium ion batteries can be prepared by a simple wet chemical process. Depending on the annealing temperature, a ZrO2 coating or a Zr doping is obtained. Zr‐doped LiNi0.8Co0.1Mn0.1O2 (NCM811) demonstrates much lower capacity fade, lower impedance, higher rate capability, and a lower voltage hysteresis over the bare material.</description><subject>Aluminum</subject><subject>Annealing</subject><subject>cathodes</subject><subject>Coating effects</subject><subject>Cycles</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>High temperature</subject><subject>Impedance</subject><subject>Inorganic compounds</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Nickel</subject><subject>nickel‐rich materials</subject><subject>Rechargeable batteries</subject><subject>Stability</subject><subject>zirconia coating</subject><subject>Zirconium</subject><subject>Zirconium dioxide</subject><subject>zirconium doping</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9Uctu20AMFIoGSJDm2jOBnp3uS17p6LjOA3DjoHUvuQjUmrI2kXbd1QqJb_mE_Ev_qF9SCS7MC8kZYgjMJMlnzi45Y-IrkmsvBeOa8WkmPiRnfMrVZJop9vE4S3GaXHTdExtK5ZxJeZb8uQ6-hZ99qNAQPIaVgLnHaN0WooervnkeQPjmdyNS7uHWbmtYU7ujgLEPBDPnCJuR9RXcW_NMzd-39x_W1LC0sbYYaQOrV7uhDtBtYF2TDbBwNTozMIuGTAze1NRagw08UKh8aEcSrDtI9C3ceQdXGCMFS92n5KTCpqOL__08-XW9WM9vJ8vVzd18tpxshRZioqoMuSCZkkDBSoVqcEbkmEsjlTYbneqUYVmyTHOeaqlR55kxrOQmy6dYyvPky0F3F_zvnrpYPPk-uOFlwfNcDWarVA1X-eHqxTa0L3bBthj2BWfFGEwxBlMcgylmi_vvx03-A7sqhdM</recordid><startdate>20180205</startdate><enddate>20180205</enddate><creator>Schipper, Florian</creator><creator>Bouzaglo, Hana</creator><creator>Dixit, Mudit</creator><creator>Erickson, Evan M.</creator><creator>Weigel, Tina</creator><creator>Talianker, Michael</creator><creator>Grinblat, Judith</creator><creator>Burstein, Larisa</creator><creator>Schmidt, Michael</creator><creator>Lampert, Jordan</creator><creator>Erk, Christoph</creator><creator>Markovsky, Boris</creator><creator>Major, Dan Thomas</creator><creator>Aurbach, Doron</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9456-7806</orcidid><orcidid>https://orcid.org/0000-0002-0661-3532</orcidid><orcidid>https://orcid.org/0000-0002-9231-0676</orcidid></search><sort><creationdate>20180205</creationdate><title>From Surface ZrO2 Coating to Bulk Zr Doping by High Temperature Annealing of Nickel‐Rich Lithiated Oxides and Their Enhanced Electrochemical Performance in Lithium Ion Batteries</title><author>Schipper, Florian ; Bouzaglo, Hana ; Dixit, Mudit ; Erickson, Evan M. ; Weigel, Tina ; Talianker, Michael ; Grinblat, Judith ; Burstein, Larisa ; Schmidt, Michael ; Lampert, Jordan ; Erk, Christoph ; Markovsky, Boris ; Major, Dan Thomas ; Aurbach, Doron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2722-4f8a12e35e2a20b4a468229a93c347cd75750abb087115737a798cc0b1c896ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Annealing</topic><topic>cathodes</topic><topic>Coating effects</topic><topic>Cycles</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>High temperature</topic><topic>Impedance</topic><topic>Inorganic compounds</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Nickel</topic><topic>nickel‐rich materials</topic><topic>Rechargeable batteries</topic><topic>Stability</topic><topic>zirconia coating</topic><topic>Zirconium</topic><topic>Zirconium dioxide</topic><topic>zirconium doping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schipper, Florian</creatorcontrib><creatorcontrib>Bouzaglo, Hana</creatorcontrib><creatorcontrib>Dixit, Mudit</creatorcontrib><creatorcontrib>Erickson, Evan M.</creatorcontrib><creatorcontrib>Weigel, Tina</creatorcontrib><creatorcontrib>Talianker, Michael</creatorcontrib><creatorcontrib>Grinblat, Judith</creatorcontrib><creatorcontrib>Burstein, Larisa</creatorcontrib><creatorcontrib>Schmidt, Michael</creatorcontrib><creatorcontrib>Lampert, Jordan</creatorcontrib><creatorcontrib>Erk, Christoph</creatorcontrib><creatorcontrib>Markovsky, Boris</creatorcontrib><creatorcontrib>Major, Dan Thomas</creatorcontrib><creatorcontrib>Aurbach, Doron</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schipper, Florian</au><au>Bouzaglo, Hana</au><au>Dixit, Mudit</au><au>Erickson, Evan M.</au><au>Weigel, Tina</au><au>Talianker, Michael</au><au>Grinblat, Judith</au><au>Burstein, Larisa</au><au>Schmidt, Michael</au><au>Lampert, Jordan</au><au>Erk, Christoph</au><au>Markovsky, Boris</au><au>Major, Dan Thomas</au><au>Aurbach, Doron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Surface ZrO2 Coating to Bulk Zr Doping by High Temperature Annealing of Nickel‐Rich Lithiated Oxides and Their Enhanced Electrochemical Performance in Lithium Ion Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2018-02-05</date><risdate>2018</risdate><volume>8</volume><issue>4</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>One of the major hurdles of Ni‐rich cathode materials Li1+x(NixCozMnz)wO2, y &gt; 0.5 for lithium‐ion batteries is their low cycling stability especially for compositions with Ni ≥ 60%, which suffer from severe capacity fading and impedance increase during cycling at elevated temperatures (e.g., 45 °C). Two promising surface and structural modifications of these materials to alleviate the above drawback are (1) coatings by electrochemically inert inorganic compounds (e.g., ZrO2) or (2) lattice doping by cations like Zr4+, Al3+, Mg2+, etc. This paper demonstrates the enhanced electrochemical behavior of Ni‐rich material LiNi0.8Co0.1Mn0.1O2 (NCM811) coated with a thin ZrO2 layer. The coating is produced by an easy and scalable wet chemical approach followed by annealing the material at ≥700 °C under oxygen that results in Zr doping. It is established that some ZrO2 remains even after annealing at ≥800 °C as a surface layer on NCM811. The main finding of this work is the enhanced cycling stability and lower impedance of the coated/doped NCM811 that can be attributed to a synergetic effect of the ZrO2 coating in combination with a zirconium doping. Surface ZrO2 coated or doped high capacity nickel‐rich layered oxides for lithium ion batteries can be prepared by a simple wet chemical process. Depending on the annealing temperature, a ZrO2 coating or a Zr doping is obtained. Zr‐doped LiNi0.8Co0.1Mn0.1O2 (NCM811) demonstrates much lower capacity fade, lower impedance, higher rate capability, and a lower voltage hysteresis over the bare material.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201701682</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9456-7806</orcidid><orcidid>https://orcid.org/0000-0002-0661-3532</orcidid><orcidid>https://orcid.org/0000-0002-9231-0676</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2018-02, Vol.8 (4), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_1994017454
source Wiley Online Library Journals Frontfile Complete
subjects Aluminum
Annealing
cathodes
Coating effects
Cycles
Doping
Electrochemical analysis
Electrode materials
High temperature
Impedance
Inorganic compounds
Lithium
Lithium-ion batteries
Nickel
nickel‐rich materials
Rechargeable batteries
Stability
zirconia coating
Zirconium
Zirconium dioxide
zirconium doping
title From Surface ZrO2 Coating to Bulk Zr Doping by High Temperature Annealing of Nickel‐Rich Lithiated Oxides and Their Enhanced Electrochemical Performance in Lithium Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Surface%20ZrO2%20Coating%20to%20Bulk%20Zr%20Doping%20by%20High%20Temperature%20Annealing%20of%20Nickel%E2%80%90Rich%20Lithiated%20Oxides%20and%20Their%20Enhanced%20Electrochemical%20Performance%20in%20Lithium%20Ion%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Schipper,%20Florian&rft.date=2018-02-05&rft.volume=8&rft.issue=4&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201701682&rft_dat=%3Cproquest_wiley%3E1994017454%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1994017454&rft_id=info:pmid/&rfr_iscdi=true