Uncertain resource leveling problem

Resource leveling problem is to make a schedule for the minimization of resource fluctuation subject to precedence constraint and other specific constraints. When indeterminacies come into play, the leveled baseline schedule obtained by solving deterministic resource leveling problem can hardly be e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2017-01, Vol.33 (4), p.2351-2361
Hauptverfasser: Ke, Hua, Zhao, Chenkai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2361
container_issue 4
container_start_page 2351
container_title Journal of intelligent & fuzzy systems
container_volume 33
creator Ke, Hua
Zhao, Chenkai
description Resource leveling problem is to make a schedule for the minimization of resource fluctuation subject to precedence constraint and other specific constraints. When indeterminacies come into play, the leveled baseline schedule obtained by solving deterministic resource leveling problem can hardly be executed as planned and this schedule may even become infeasible. In this paper, on the basis of uncertainty theory, we consider an uncertain resource leveling problem in which activity durations are estimated by experts. In order to deal with these estimations, three uncertainty-theory-based project scheduling models are proposed and we utilize revised estimation of distribution algorithms to search quasi-optimal schedules. Numerical experiments are also provided to illustrate the effectiveness of the algorithms.
doi_str_mv 10.3233/JIFS-17493
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1993981975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993981975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-8d5e3a1f9e40b083dbbaa81ad724fe9ef99f7422d3fc6e322c2fa5e3e75390d53</originalsourceid><addsrcrecordid>eNotkMtKw0AUhgdRsFY3PkGgO2F0rpk5SylWKwUX2vUwmZyRlDSpM6ng25tYV-df_JfDR8gtZ_dSSPnwul69U24UyDMy49ZoaqE056NmpaJcqPKSXOW8Y4wbLdiMLLZdwDT4pisS5v6YAhYtfmPbdJ_FIfVVi_trchF9m_Hm_87JdvX0sXyhm7fn9fJxQ4PQMFBba5SeR0DFKmZlXVXeW-5rI1REwAgQjRKiljGUKIUIIvoxgkZLYLWWc7I49Y67X0fMg9uND3XjpOMAEiwHM7nuTq6Q-pwTRndIzd6nH8eZmyC4CYL7gyB_Aa3eTkM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993981975</pqid></control><display><type>article</type><title>Uncertain resource leveling problem</title><source>EBSCOhost Business Source Complete</source><creator>Ke, Hua ; Zhao, Chenkai</creator><creatorcontrib>Ke, Hua ; Zhao, Chenkai</creatorcontrib><description>Resource leveling problem is to make a schedule for the minimization of resource fluctuation subject to precedence constraint and other specific constraints. When indeterminacies come into play, the leveled baseline schedule obtained by solving deterministic resource leveling problem can hardly be executed as planned and this schedule may even become infeasible. In this paper, on the basis of uncertainty theory, we consider an uncertain resource leveling problem in which activity durations are estimated by experts. In order to deal with these estimations, three uncertainty-theory-based project scheduling models are proposed and we utilize revised estimation of distribution algorithms to search quasi-optimal schedules. Numerical experiments are also provided to illustrate the effectiveness of the algorithms.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-17493</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Leveling ; Mathematical models ; Optimization ; Schedules ; Uncertainty ; Variations</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2017-01, Vol.33 (4), p.2351-2361</ispartof><rights>Copyright IOS Press BV 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-8d5e3a1f9e40b083dbbaa81ad724fe9ef99f7422d3fc6e322c2fa5e3e75390d53</citedby><cites>FETCH-LOGICAL-c259t-8d5e3a1f9e40b083dbbaa81ad724fe9ef99f7422d3fc6e322c2fa5e3e75390d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ke, Hua</creatorcontrib><creatorcontrib>Zhao, Chenkai</creatorcontrib><title>Uncertain resource leveling problem</title><title>Journal of intelligent &amp; fuzzy systems</title><description>Resource leveling problem is to make a schedule for the minimization of resource fluctuation subject to precedence constraint and other specific constraints. When indeterminacies come into play, the leveled baseline schedule obtained by solving deterministic resource leveling problem can hardly be executed as planned and this schedule may even become infeasible. In this paper, on the basis of uncertainty theory, we consider an uncertain resource leveling problem in which activity durations are estimated by experts. In order to deal with these estimations, three uncertainty-theory-based project scheduling models are proposed and we utilize revised estimation of distribution algorithms to search quasi-optimal schedules. Numerical experiments are also provided to illustrate the effectiveness of the algorithms.</description><subject>Algorithms</subject><subject>Leveling</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Schedules</subject><subject>Uncertainty</subject><subject>Variations</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkMtKw0AUhgdRsFY3PkGgO2F0rpk5SylWKwUX2vUwmZyRlDSpM6ng25tYV-df_JfDR8gtZ_dSSPnwul69U24UyDMy49ZoaqE056NmpaJcqPKSXOW8Y4wbLdiMLLZdwDT4pisS5v6YAhYtfmPbdJ_FIfVVi_trchF9m_Hm_87JdvX0sXyhm7fn9fJxQ4PQMFBba5SeR0DFKmZlXVXeW-5rI1REwAgQjRKiljGUKIUIIvoxgkZLYLWWc7I49Y67X0fMg9uND3XjpOMAEiwHM7nuTq6Q-pwTRndIzd6nH8eZmyC4CYL7gyB_Aa3eTkM</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Ke, Hua</creator><creator>Zhao, Chenkai</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>Uncertain resource leveling problem</title><author>Ke, Hua ; Zhao, Chenkai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-8d5e3a1f9e40b083dbbaa81ad724fe9ef99f7422d3fc6e322c2fa5e3e75390d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Leveling</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Schedules</topic><topic>Uncertainty</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Hua</creatorcontrib><creatorcontrib>Zhao, Chenkai</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ke, Hua</au><au>Zhao, Chenkai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertain resource leveling problem</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>33</volume><issue>4</issue><spage>2351</spage><epage>2361</epage><pages>2351-2361</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Resource leveling problem is to make a schedule for the minimization of resource fluctuation subject to precedence constraint and other specific constraints. When indeterminacies come into play, the leveled baseline schedule obtained by solving deterministic resource leveling problem can hardly be executed as planned and this schedule may even become infeasible. In this paper, on the basis of uncertainty theory, we consider an uncertain resource leveling problem in which activity durations are estimated by experts. In order to deal with these estimations, three uncertainty-theory-based project scheduling models are proposed and we utilize revised estimation of distribution algorithms to search quasi-optimal schedules. Numerical experiments are also provided to illustrate the effectiveness of the algorithms.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-17493</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2017-01, Vol.33 (4), p.2351-2361
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_1993981975
source EBSCOhost Business Source Complete
subjects Algorithms
Leveling
Mathematical models
Optimization
Schedules
Uncertainty
Variations
title Uncertain resource leveling problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertain%20resource%20leveling%20problem&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Ke,%20Hua&rft.date=2017-01-01&rft.volume=33&rft.issue=4&rft.spage=2351&rft.epage=2361&rft.pages=2351-2361&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-17493&rft_dat=%3Cproquest_cross%3E1993981975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993981975&rft_id=info:pmid/&rfr_iscdi=true