Uncertain resource leveling problem
Resource leveling problem is to make a schedule for the minimization of resource fluctuation subject to precedence constraint and other specific constraints. When indeterminacies come into play, the leveled baseline schedule obtained by solving deterministic resource leveling problem can hardly be e...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2017-01, Vol.33 (4), p.2351-2361 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2361 |
---|---|
container_issue | 4 |
container_start_page | 2351 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 33 |
creator | Ke, Hua Zhao, Chenkai |
description | Resource leveling problem is to make a schedule for the minimization of resource fluctuation subject to precedence constraint and other specific constraints. When indeterminacies come into play, the leveled baseline schedule obtained by solving deterministic resource leveling problem can hardly be executed as planned and this schedule may even become infeasible. In this paper, on the basis of uncertainty theory, we consider an uncertain resource leveling problem in which activity durations are estimated by experts. In order to deal with these estimations, three uncertainty-theory-based project scheduling models are proposed and we utilize revised estimation of distribution algorithms to search quasi-optimal schedules. Numerical experiments are also provided to illustrate the effectiveness of the algorithms. |
doi_str_mv | 10.3233/JIFS-17493 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1993981975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993981975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-8d5e3a1f9e40b083dbbaa81ad724fe9ef99f7422d3fc6e322c2fa5e3e75390d53</originalsourceid><addsrcrecordid>eNotkMtKw0AUhgdRsFY3PkGgO2F0rpk5SylWKwUX2vUwmZyRlDSpM6ng25tYV-df_JfDR8gtZ_dSSPnwul69U24UyDMy49ZoaqE056NmpaJcqPKSXOW8Y4wbLdiMLLZdwDT4pisS5v6YAhYtfmPbdJ_FIfVVi_trchF9m_Hm_87JdvX0sXyhm7fn9fJxQ4PQMFBba5SeR0DFKmZlXVXeW-5rI1REwAgQjRKiljGUKIUIIvoxgkZLYLWWc7I49Y67X0fMg9uND3XjpOMAEiwHM7nuTq6Q-pwTRndIzd6nH8eZmyC4CYL7gyB_Aa3eTkM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993981975</pqid></control><display><type>article</type><title>Uncertain resource leveling problem</title><source>EBSCOhost Business Source Complete</source><creator>Ke, Hua ; Zhao, Chenkai</creator><creatorcontrib>Ke, Hua ; Zhao, Chenkai</creatorcontrib><description>Resource leveling problem is to make a schedule for the minimization of resource fluctuation subject to precedence constraint and other specific constraints. When indeterminacies come into play, the leveled baseline schedule obtained by solving deterministic resource leveling problem can hardly be executed as planned and this schedule may even become infeasible. In this paper, on the basis of uncertainty theory, we consider an uncertain resource leveling problem in which activity durations are estimated by experts. In order to deal with these estimations, three uncertainty-theory-based project scheduling models are proposed and we utilize revised estimation of distribution algorithms to search quasi-optimal schedules. Numerical experiments are also provided to illustrate the effectiveness of the algorithms.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-17493</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Leveling ; Mathematical models ; Optimization ; Schedules ; Uncertainty ; Variations</subject><ispartof>Journal of intelligent & fuzzy systems, 2017-01, Vol.33 (4), p.2351-2361</ispartof><rights>Copyright IOS Press BV 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-8d5e3a1f9e40b083dbbaa81ad724fe9ef99f7422d3fc6e322c2fa5e3e75390d53</citedby><cites>FETCH-LOGICAL-c259t-8d5e3a1f9e40b083dbbaa81ad724fe9ef99f7422d3fc6e322c2fa5e3e75390d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ke, Hua</creatorcontrib><creatorcontrib>Zhao, Chenkai</creatorcontrib><title>Uncertain resource leveling problem</title><title>Journal of intelligent & fuzzy systems</title><description>Resource leveling problem is to make a schedule for the minimization of resource fluctuation subject to precedence constraint and other specific constraints. When indeterminacies come into play, the leveled baseline schedule obtained by solving deterministic resource leveling problem can hardly be executed as planned and this schedule may even become infeasible. In this paper, on the basis of uncertainty theory, we consider an uncertain resource leveling problem in which activity durations are estimated by experts. In order to deal with these estimations, three uncertainty-theory-based project scheduling models are proposed and we utilize revised estimation of distribution algorithms to search quasi-optimal schedules. Numerical experiments are also provided to illustrate the effectiveness of the algorithms.</description><subject>Algorithms</subject><subject>Leveling</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Schedules</subject><subject>Uncertainty</subject><subject>Variations</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkMtKw0AUhgdRsFY3PkGgO2F0rpk5SylWKwUX2vUwmZyRlDSpM6ng25tYV-df_JfDR8gtZ_dSSPnwul69U24UyDMy49ZoaqE056NmpaJcqPKSXOW8Y4wbLdiMLLZdwDT4pisS5v6YAhYtfmPbdJ_FIfVVi_trchF9m_Hm_87JdvX0sXyhm7fn9fJxQ4PQMFBba5SeR0DFKmZlXVXeW-5rI1REwAgQjRKiljGUKIUIIvoxgkZLYLWWc7I49Y67X0fMg9uND3XjpOMAEiwHM7nuTq6Q-pwTRndIzd6nH8eZmyC4CYL7gyB_Aa3eTkM</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Ke, Hua</creator><creator>Zhao, Chenkai</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>Uncertain resource leveling problem</title><author>Ke, Hua ; Zhao, Chenkai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-8d5e3a1f9e40b083dbbaa81ad724fe9ef99f7422d3fc6e322c2fa5e3e75390d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Leveling</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Schedules</topic><topic>Uncertainty</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Hua</creatorcontrib><creatorcontrib>Zhao, Chenkai</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ke, Hua</au><au>Zhao, Chenkai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertain resource leveling problem</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>33</volume><issue>4</issue><spage>2351</spage><epage>2361</epage><pages>2351-2361</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Resource leveling problem is to make a schedule for the minimization of resource fluctuation subject to precedence constraint and other specific constraints. When indeterminacies come into play, the leveled baseline schedule obtained by solving deterministic resource leveling problem can hardly be executed as planned and this schedule may even become infeasible. In this paper, on the basis of uncertainty theory, we consider an uncertain resource leveling problem in which activity durations are estimated by experts. In order to deal with these estimations, three uncertainty-theory-based project scheduling models are proposed and we utilize revised estimation of distribution algorithms to search quasi-optimal schedules. Numerical experiments are also provided to illustrate the effectiveness of the algorithms.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-17493</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2017-01, Vol.33 (4), p.2351-2361 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_1993981975 |
source | EBSCOhost Business Source Complete |
subjects | Algorithms Leveling Mathematical models Optimization Schedules Uncertainty Variations |
title | Uncertain resource leveling problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertain%20resource%20leveling%20problem&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Ke,%20Hua&rft.date=2017-01-01&rft.volume=33&rft.issue=4&rft.spage=2351&rft.epage=2361&rft.pages=2351-2361&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-17493&rft_dat=%3Cproquest_cross%3E1993981975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993981975&rft_id=info:pmid/&rfr_iscdi=true |