Why so abnormal? Detecting domains receiving anomalous surge traffic in a monitored network
Anomalous traffics are those unusual and colossal hits a non-popular domain gets for a small epoch period in a day. Regardless of whether these anomalies are malicious or not, it is important to analyze them as they might have a dramatic impact on a customer or an end user. Identifying these traffic...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2017-01, Vol.32 (4), p.2901-2907 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2907 |
---|---|
container_issue | 4 |
container_start_page | 2901 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 32 |
creator | Ashok, Aravind Poornachandran, Prabaharan Pal, Soumajit Sankar, Prem Surendran, K. |
description | Anomalous traffics are those unusual and colossal hits a non-popular domain gets for a small epoch period in a day. Regardless of whether these anomalies are malicious or not, it is important to analyze them as they might have a dramatic impact on a customer or an end user. Identifying these traffic anomalies is a challenge, as it requires mining and identifying patterns among huge volume of data. In this paper, we provide a statistical and dynamic reputation based approach to identify unpopular domains receiving huge volumes of traffic within a short period of time. Our aim is to develop and deploy a lightweight framework in a monitored network capable of analyzing DNS traffic and provide early warning alerts regarding domains receiving unusual hits to reduce the collateral damage faced by an end–user or customer. The authors have employed statistical analysis, supervised learning and ensemble based dynamic reputation of domains, IP addresses and name servers to distinguish benign and abnormal domains with very low false positives. |
doi_str_mv | 10.3233/JIFS-169233 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1993977381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993977381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-fe413d60e424b30a73d0095f4a4ef9a759355fd00c6ba2295b2b6369cb3d392d3</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoWKsr_0DApYzmY5I0K5FqtVJwoeLCRchkkpraSWqSUfrvnVJX73K43AcHgHOMriih9PppPnupMJdDPgAjPBGsmkguDoeMeF1hUvNjcJLzCiEsGEEj8PH-uYU5Qt2EmDq9voF3tlhTfFjCNnbahwyTNdb_7IgOA1rHPsPcp6WFJWnnvIE-QA27GHyJybYw2PIb09cpOHJ6ne3Z_x2Dt9n96_SxWjw_zKe3i8oQLEvlbI1py5GtSd1QpAVtEZLM1bq2TmrBJGXMDczwRhMiWUMaTrk0DW2pJC0dg4v97ibF797molaxT2F4qbCUVApBJ3hoXe5bJsWck3Vqk3yn01ZhpHb21M6e2tujf4Y4YmM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993977381</pqid></control><display><type>article</type><title>Why so abnormal? Detecting domains receiving anomalous surge traffic in a monitored network</title><source>EBSCOhost Business Source Complete</source><creator>Ashok, Aravind ; Poornachandran, Prabaharan ; Pal, Soumajit ; Sankar, Prem ; Surendran, K.</creator><contributor>El-Alfy, El-Sayed M. ; Thampi, Sabu M.</contributor><creatorcontrib>Ashok, Aravind ; Poornachandran, Prabaharan ; Pal, Soumajit ; Sankar, Prem ; Surendran, K. ; El-Alfy, El-Sayed M. ; Thampi, Sabu M.</creatorcontrib><description>Anomalous traffics are those unusual and colossal hits a non-popular domain gets for a small epoch period in a day. Regardless of whether these anomalies are malicious or not, it is important to analyze them as they might have a dramatic impact on a customer or an end user. Identifying these traffic anomalies is a challenge, as it requires mining and identifying patterns among huge volume of data. In this paper, we provide a statistical and dynamic reputation based approach to identify unpopular domains receiving huge volumes of traffic within a short period of time. Our aim is to develop and deploy a lightweight framework in a monitored network capable of analyzing DNS traffic and provide early warning alerts regarding domains receiving unusual hits to reduce the collateral damage faced by an end–user or customer. The authors have employed statistical analysis, supervised learning and ensemble based dynamic reputation of domains, IP addresses and name servers to distinguish benign and abnormal domains with very low false positives.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-169233</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Anomalies ; Data mining ; Domain names ; IP (Internet Protocol) ; Statistical analysis</subject><ispartof>Journal of intelligent & fuzzy systems, 2017-01, Vol.32 (4), p.2901-2907</ispartof><rights>Copyright IOS Press BV 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-fe413d60e424b30a73d0095f4a4ef9a759355fd00c6ba2295b2b6369cb3d392d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>El-Alfy, El-Sayed M.</contributor><contributor>Thampi, Sabu M.</contributor><creatorcontrib>Ashok, Aravind</creatorcontrib><creatorcontrib>Poornachandran, Prabaharan</creatorcontrib><creatorcontrib>Pal, Soumajit</creatorcontrib><creatorcontrib>Sankar, Prem</creatorcontrib><creatorcontrib>Surendran, K.</creatorcontrib><title>Why so abnormal? Detecting domains receiving anomalous surge traffic in a monitored network</title><title>Journal of intelligent & fuzzy systems</title><description>Anomalous traffics are those unusual and colossal hits a non-popular domain gets for a small epoch period in a day. Regardless of whether these anomalies are malicious or not, it is important to analyze them as they might have a dramatic impact on a customer or an end user. Identifying these traffic anomalies is a challenge, as it requires mining and identifying patterns among huge volume of data. In this paper, we provide a statistical and dynamic reputation based approach to identify unpopular domains receiving huge volumes of traffic within a short period of time. Our aim is to develop and deploy a lightweight framework in a monitored network capable of analyzing DNS traffic and provide early warning alerts regarding domains receiving unusual hits to reduce the collateral damage faced by an end–user or customer. The authors have employed statistical analysis, supervised learning and ensemble based dynamic reputation of domains, IP addresses and name servers to distinguish benign and abnormal domains with very low false positives.</description><subject>Anomalies</subject><subject>Data mining</subject><subject>Domain names</subject><subject>IP (Internet Protocol)</subject><subject>Statistical analysis</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEURYMoWKsr_0DApYzmY5I0K5FqtVJwoeLCRchkkpraSWqSUfrvnVJX73K43AcHgHOMriih9PppPnupMJdDPgAjPBGsmkguDoeMeF1hUvNjcJLzCiEsGEEj8PH-uYU5Qt2EmDq9voF3tlhTfFjCNnbahwyTNdb_7IgOA1rHPsPcp6WFJWnnvIE-QA27GHyJybYw2PIb09cpOHJ6ne3Z_x2Dt9n96_SxWjw_zKe3i8oQLEvlbI1py5GtSd1QpAVtEZLM1bq2TmrBJGXMDczwRhMiWUMaTrk0DW2pJC0dg4v97ibF797molaxT2F4qbCUVApBJ3hoXe5bJsWck3Vqk3yn01ZhpHb21M6e2tujf4Y4YmM</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Ashok, Aravind</creator><creator>Poornachandran, Prabaharan</creator><creator>Pal, Soumajit</creator><creator>Sankar, Prem</creator><creator>Surendran, K.</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>Why so abnormal? Detecting domains receiving anomalous surge traffic in a monitored network</title><author>Ashok, Aravind ; Poornachandran, Prabaharan ; Pal, Soumajit ; Sankar, Prem ; Surendran, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-fe413d60e424b30a73d0095f4a4ef9a759355fd00c6ba2295b2b6369cb3d392d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anomalies</topic><topic>Data mining</topic><topic>Domain names</topic><topic>IP (Internet Protocol)</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashok, Aravind</creatorcontrib><creatorcontrib>Poornachandran, Prabaharan</creatorcontrib><creatorcontrib>Pal, Soumajit</creatorcontrib><creatorcontrib>Sankar, Prem</creatorcontrib><creatorcontrib>Surendran, K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashok, Aravind</au><au>Poornachandran, Prabaharan</au><au>Pal, Soumajit</au><au>Sankar, Prem</au><au>Surendran, K.</au><au>El-Alfy, El-Sayed M.</au><au>Thampi, Sabu M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why so abnormal? Detecting domains receiving anomalous surge traffic in a monitored network</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>32</volume><issue>4</issue><spage>2901</spage><epage>2907</epage><pages>2901-2907</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Anomalous traffics are those unusual and colossal hits a non-popular domain gets for a small epoch period in a day. Regardless of whether these anomalies are malicious or not, it is important to analyze them as they might have a dramatic impact on a customer or an end user. Identifying these traffic anomalies is a challenge, as it requires mining and identifying patterns among huge volume of data. In this paper, we provide a statistical and dynamic reputation based approach to identify unpopular domains receiving huge volumes of traffic within a short period of time. Our aim is to develop and deploy a lightweight framework in a monitored network capable of analyzing DNS traffic and provide early warning alerts regarding domains receiving unusual hits to reduce the collateral damage faced by an end–user or customer. The authors have employed statistical analysis, supervised learning and ensemble based dynamic reputation of domains, IP addresses and name servers to distinguish benign and abnormal domains with very low false positives.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-169233</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2017-01, Vol.32 (4), p.2901-2907 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_1993977381 |
source | EBSCOhost Business Source Complete |
subjects | Anomalies Data mining Domain names IP (Internet Protocol) Statistical analysis |
title | Why so abnormal? Detecting domains receiving anomalous surge traffic in a monitored network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20so%20abnormal?%20Detecting%20domains%20receiving%20anomalous%20surge%20traffic%20in%20a%20monitored%20network&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Ashok,%20Aravind&rft.date=2017-01-01&rft.volume=32&rft.issue=4&rft.spage=2901&rft.epage=2907&rft.pages=2901-2907&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-169233&rft_dat=%3Cproquest_cross%3E1993977381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993977381&rft_id=info:pmid/&rfr_iscdi=true |