Distribution kinetics of thermolytic macromolecular reactions
Essential elements of thermolytic reaction kinetics for distributions of polymers are reviewed. Bond scission, occurring randomly along a chain backbone or at the chain end, is the major reaction process in polymer thermolysis. Underlying this bond scission are free radical mechanisms, including ini...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2001-10, Vol.47 (10), p.2289-2303 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2303 |
---|---|
container_issue | 10 |
container_start_page | 2289 |
container_title | AIChE journal |
container_volume | 47 |
creator | Sterling, W. Jerome McCoy, Benjamin J. |
description | Essential elements of thermolytic reaction kinetics for distributions of polymers are reviewed. Bond scission, occurring randomly along a chain backbone or at the chain end, is the major reaction process in polymer thermolysis. Underlying this bond scission are free radical mechanisms, including initiation and termination, hydrogen ion, and beta scission. Population‐balance equations for the molecular‐weight distributions of macromolecules or their radicals describe the dynamics of the reactions. The governing integrodifferential equations for continuous distributions can be solved by moment methods, similarity techniques, other analytical procedures, or numerical methods. The approach has been applied to analytical thermolysis and pyrolysis, polymer degradation for stability characterization or plastics recycling, and coal thermolysis to produce fuels and feedstocks. Experiments have demonstrated the usefulness of the continuous distribution kinetics approach for polymer thermolysis with additives, including hydrogen donors, peroxides, and other polymers. Molecular‐weight distributions and their moments can be measured by size exclusion chromatography. Experimental data can be interpreted by evaluating rate parameters, which may be composites of rate coefficients for elementary steps in complex reaction mechanisms. |
doi_str_mv | 10.1002/aic.690471014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199394241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>88246743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4814-218d3896fbb08046ec61d00fad24f8cd42daace793c32da0510033a1dd2869ab3</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqUwskdIjCnnj8TxwFAKlKIKGAqMluM4wm2aFDsR9L_HVavCxHT3rN-9Oz-EzjEMMAC5UlYPUgGMY8DsAPVwwnicCEgOUQ8AcBwe8DE68X4eFOEZ6aHrW-tbZ_OutU0dLWxtWqt91JRR-2HcsqnWQUdLpV0ThNFdpVzkjNIb3p-io1JV3pztah-93t_NRg_x9Hk8GQ2nsWYZZjHBWUEzkZZ5Dhmw1OgUFwClKggrM10wUiilDRdU09BCEr5DqcJFQbJUqJz20cXWd-Waz874Vs6bztVhpcRCUMEIwwGKt1C41XtnSrlydqncWmKQm4BkCEjuAwr85c5Uea2q0qlaW_87xIADTze-fMt92cqs_zeVw8no74bdRSFj872fVG4hU055It-fxlLA49tsnNzIF_oDGYWFGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199394241</pqid></control><display><type>article</type><title>Distribution kinetics of thermolytic macromolecular reactions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sterling, W. Jerome ; McCoy, Benjamin J.</creator><creatorcontrib>Sterling, W. Jerome ; McCoy, Benjamin J.</creatorcontrib><description>Essential elements of thermolytic reaction kinetics for distributions of polymers are reviewed. Bond scission, occurring randomly along a chain backbone or at the chain end, is the major reaction process in polymer thermolysis. Underlying this bond scission are free radical mechanisms, including initiation and termination, hydrogen ion, and beta scission. Population‐balance equations for the molecular‐weight distributions of macromolecules or their radicals describe the dynamics of the reactions. The governing integrodifferential equations for continuous distributions can be solved by moment methods, similarity techniques, other analytical procedures, or numerical methods. The approach has been applied to analytical thermolysis and pyrolysis, polymer degradation for stability characterization or plastics recycling, and coal thermolysis to produce fuels and feedstocks. Experiments have demonstrated the usefulness of the continuous distribution kinetics approach for polymer thermolysis with additives, including hydrogen donors, peroxides, and other polymers. Molecular‐weight distributions and their moments can be measured by size exclusion chromatography. Experimental data can be interpreted by evaluating rate parameters, which may be composites of rate coefficients for elementary steps in complex reaction mechanisms.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690471014</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical reactions and properties ; Degradation ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers</subject><ispartof>AIChE journal, 2001-10, Vol.47 (10), p.2289-2303</ispartof><rights>Copyright © 2001 American Institute of Chemical Engineers (AIChE)</rights><rights>2002 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Oct 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4814-218d3896fbb08046ec61d00fad24f8cd42daace793c32da0510033a1dd2869ab3</citedby><cites>FETCH-LOGICAL-c4814-218d3896fbb08046ec61d00fad24f8cd42daace793c32da0510033a1dd2869ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690471014$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690471014$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14070761$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sterling, W. Jerome</creatorcontrib><creatorcontrib>McCoy, Benjamin J.</creatorcontrib><title>Distribution kinetics of thermolytic macromolecular reactions</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Essential elements of thermolytic reaction kinetics for distributions of polymers are reviewed. Bond scission, occurring randomly along a chain backbone or at the chain end, is the major reaction process in polymer thermolysis. Underlying this bond scission are free radical mechanisms, including initiation and termination, hydrogen ion, and beta scission. Population‐balance equations for the molecular‐weight distributions of macromolecules or their radicals describe the dynamics of the reactions. The governing integrodifferential equations for continuous distributions can be solved by moment methods, similarity techniques, other analytical procedures, or numerical methods. The approach has been applied to analytical thermolysis and pyrolysis, polymer degradation for stability characterization or plastics recycling, and coal thermolysis to produce fuels and feedstocks. Experiments have demonstrated the usefulness of the continuous distribution kinetics approach for polymer thermolysis with additives, including hydrogen donors, peroxides, and other polymers. Molecular‐weight distributions and their moments can be measured by size exclusion chromatography. Experimental data can be interpreted by evaluating rate parameters, which may be composites of rate coefficients for elementary steps in complex reaction mechanisms.</description><subject>Applied sciences</subject><subject>Chemical reactions and properties</subject><subject>Degradation</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kL1PwzAQxS0EEqUwskdIjCnnj8TxwFAKlKIKGAqMluM4wm2aFDsR9L_HVavCxHT3rN-9Oz-EzjEMMAC5UlYPUgGMY8DsAPVwwnicCEgOUQ8AcBwe8DE68X4eFOEZ6aHrW-tbZ_OutU0dLWxtWqt91JRR-2HcsqnWQUdLpV0ThNFdpVzkjNIb3p-io1JV3pztah-93t_NRg_x9Hk8GQ2nsWYZZjHBWUEzkZZ5Dhmw1OgUFwClKggrM10wUiilDRdU09BCEr5DqcJFQbJUqJz20cXWd-Waz874Vs6bztVhpcRCUMEIwwGKt1C41XtnSrlydqncWmKQm4BkCEjuAwr85c5Uea2q0qlaW_87xIADTze-fMt92cqs_zeVw8no74bdRSFj872fVG4hU055It-fxlLA49tsnNzIF_oDGYWFGg</recordid><startdate>200110</startdate><enddate>200110</enddate><creator>Sterling, W. Jerome</creator><creator>McCoy, Benjamin J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>200110</creationdate><title>Distribution kinetics of thermolytic macromolecular reactions</title><author>Sterling, W. Jerome ; McCoy, Benjamin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4814-218d3896fbb08046ec61d00fad24f8cd42daace793c32da0510033a1dd2869ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Chemical reactions and properties</topic><topic>Degradation</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sterling, W. Jerome</creatorcontrib><creatorcontrib>McCoy, Benjamin J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sterling, W. Jerome</au><au>McCoy, Benjamin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution kinetics of thermolytic macromolecular reactions</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2001-10</date><risdate>2001</risdate><volume>47</volume><issue>10</issue><spage>2289</spage><epage>2303</epage><pages>2289-2303</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Essential elements of thermolytic reaction kinetics for distributions of polymers are reviewed. Bond scission, occurring randomly along a chain backbone or at the chain end, is the major reaction process in polymer thermolysis. Underlying this bond scission are free radical mechanisms, including initiation and termination, hydrogen ion, and beta scission. Population‐balance equations for the molecular‐weight distributions of macromolecules or their radicals describe the dynamics of the reactions. The governing integrodifferential equations for continuous distributions can be solved by moment methods, similarity techniques, other analytical procedures, or numerical methods. The approach has been applied to analytical thermolysis and pyrolysis, polymer degradation for stability characterization or plastics recycling, and coal thermolysis to produce fuels and feedstocks. Experiments have demonstrated the usefulness of the continuous distribution kinetics approach for polymer thermolysis with additives, including hydrogen donors, peroxides, and other polymers. Molecular‐weight distributions and their moments can be measured by size exclusion chromatography. Experimental data can be interpreted by evaluating rate parameters, which may be composites of rate coefficients for elementary steps in complex reaction mechanisms.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.690471014</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2001-10, Vol.47 (10), p.2289-2303 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_199394241 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Chemical reactions and properties Degradation Exact sciences and technology Organic polymers Physicochemistry of polymers |
title | Distribution kinetics of thermolytic macromolecular reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20kinetics%20of%20thermolytic%20macromolecular%20reactions&rft.jtitle=AIChE%20journal&rft.au=Sterling,%20W.%20Jerome&rft.date=2001-10&rft.volume=47&rft.issue=10&rft.spage=2289&rft.epage=2303&rft.pages=2289-2303&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690471014&rft_dat=%3Cproquest_cross%3E88246743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199394241&rft_id=info:pmid/&rfr_iscdi=true |