Axial and radial solids distribution in a long and high-flux CFB riser
Radial solids concentration profiles were determined with a fiber‐optic probe on eight axial levels in a 76‐mm‐ID, 10‐m riser, at solids flux (solids circulation rate) up to 550 kg/m2·s and superficial gas velocity up to 10 m/s. Radial concentration profiles at high solids fluxes of over 300 kg/m2·s...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2001-10, Vol.47 (10), p.2197-2205 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2205 |
---|---|
container_issue | 10 |
container_start_page | 2197 |
container_title | AIChE journal |
container_volume | 47 |
creator | Pärssinen, J. H. Zhu, J.-X. |
description | Radial solids concentration profiles were determined with a fiber‐optic probe on eight axial levels in a 76‐mm‐ID, 10‐m riser, at solids flux (solids circulation rate) up to 550 kg/m2·s and superficial gas velocity up to 10 m/s. Radial concentration profiles at high solids fluxes of over 300 kg/m2·s are less uniform than lower fluxes of less than 200 kg/m2·s. Under all operating conditions, the flow development in the riser center is nearly instant, with the solids concentration remaining low at the riser center throughout the riser. In the wall region, increasing solids flux significantly slows down the flow development, with the solids concentration near the wall decreasing all the way toward the riser top at high fluxes. In the high‐flux circulating fluidized bed (HFCFB), a middle section with intermediate solids holdups of about 7 to 20% was between the bottom dense section and top dilute section, with its length increasing as the solids circulation rate increases and as the gas velocity decreases. Flow conditions in this section resemble those of the dense suspension upflow under high‐density operating conditions by Grace et al. (1999). When its length extends to the riser top, a high‐density circulating fluidized bed for which an HFCFB is a necessary but not a sufficient condition, forms. |
doi_str_mv | 10.1002/aic.690471007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199393945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>88245134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4157-63069838eb8a4ddaf3ee522c5be84f04b27bf3fec87b9097d29a4e6babdc04a33</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqUwsltIjClObMfx2A_6IVWwgBiti-O0LiEpdiPaf49Lq8KEPNhnPffc6UXoNia9mJDkAazupZIwESpxhjoxZyLikvBz1CGExFH4iC_RlferUCUiSzpo3N9aqDDUBXZQ7J--qWzhcWH9xtm83dimxrbGgKumXvyAS7tYRmXVbvFwPMDOeuOu0UUJlTc3x7uLXsePL8NpNH-ezIb9eaRZzEWUUpLKjGYmz4AVBZTUGJ4kmucmYyVheSLykpZGZyKXRIoikcBMmkNeaMKA0i66O3jXrvlsjd-oVdO6OoxUsZQ0HMYDFB0g7RrvnSnV2tkPcDsVE7VPSoWk1CmpwN8fpeA1VKWDWlv_28RIKqjce8WB-7KV2f0vVf3Z8O-E40YhVLM9dYJ7V0EtuHp7mqjpKBvNyYAqTr8BXC-Gyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199393945</pqid></control><display><type>article</type><title>Axial and radial solids distribution in a long and high-flux CFB riser</title><source>Access via Wiley Online Library</source><creator>Pärssinen, J. H. ; Zhu, J.-X.</creator><creatorcontrib>Pärssinen, J. H. ; Zhu, J.-X.</creatorcontrib><description>Radial solids concentration profiles were determined with a fiber‐optic probe on eight axial levels in a 76‐mm‐ID, 10‐m riser, at solids flux (solids circulation rate) up to 550 kg/m2·s and superficial gas velocity up to 10 m/s. Radial concentration profiles at high solids fluxes of over 300 kg/m2·s are less uniform than lower fluxes of less than 200 kg/m2·s. Under all operating conditions, the flow development in the riser center is nearly instant, with the solids concentration remaining low at the riser center throughout the riser. In the wall region, increasing solids flux significantly slows down the flow development, with the solids concentration near the wall decreasing all the way toward the riser top at high fluxes. In the high‐flux circulating fluidized bed (HFCFB), a middle section with intermediate solids holdups of about 7 to 20% was between the bottom dense section and top dilute section, with its length increasing as the solids circulation rate increases and as the gas velocity decreases. Flow conditions in this section resemble those of the dense suspension upflow under high‐density operating conditions by Grace et al. (1999). When its length extends to the riser top, a high‐density circulating fluidized bed for which an HFCFB is a necessary but not a sufficient condition, forms.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690471007</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; Fluidization</subject><ispartof>AIChE journal, 2001-10, Vol.47 (10), p.2197-2205</ispartof><rights>Copyright © 2001 American Institute of Chemical Engineers (AIChE)</rights><rights>2002 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Oct 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4157-63069838eb8a4ddaf3ee522c5be84f04b27bf3fec87b9097d29a4e6babdc04a33</citedby><cites>FETCH-LOGICAL-c4157-63069838eb8a4ddaf3ee522c5be84f04b27bf3fec87b9097d29a4e6babdc04a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690471007$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690471007$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14067395$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pärssinen, J. H.</creatorcontrib><creatorcontrib>Zhu, J.-X.</creatorcontrib><title>Axial and radial solids distribution in a long and high-flux CFB riser</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Radial solids concentration profiles were determined with a fiber‐optic probe on eight axial levels in a 76‐mm‐ID, 10‐m riser, at solids flux (solids circulation rate) up to 550 kg/m2·s and superficial gas velocity up to 10 m/s. Radial concentration profiles at high solids fluxes of over 300 kg/m2·s are less uniform than lower fluxes of less than 200 kg/m2·s. Under all operating conditions, the flow development in the riser center is nearly instant, with the solids concentration remaining low at the riser center throughout the riser. In the wall region, increasing solids flux significantly slows down the flow development, with the solids concentration near the wall decreasing all the way toward the riser top at high fluxes. In the high‐flux circulating fluidized bed (HFCFB), a middle section with intermediate solids holdups of about 7 to 20% was between the bottom dense section and top dilute section, with its length increasing as the solids circulation rate increases and as the gas velocity decreases. Flow conditions in this section resemble those of the dense suspension upflow under high‐density operating conditions by Grace et al. (1999). When its length extends to the riser top, a high‐density circulating fluidized bed for which an HFCFB is a necessary but not a sufficient condition, forms.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Fluidization</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kD1PwzAQhi0EEqUwsltIjClObMfx2A_6IVWwgBiti-O0LiEpdiPaf49Lq8KEPNhnPffc6UXoNia9mJDkAazupZIwESpxhjoxZyLikvBz1CGExFH4iC_RlferUCUiSzpo3N9aqDDUBXZQ7J--qWzhcWH9xtm83dimxrbGgKumXvyAS7tYRmXVbvFwPMDOeuOu0UUJlTc3x7uLXsePL8NpNH-ezIb9eaRZzEWUUpLKjGYmz4AVBZTUGJ4kmucmYyVheSLykpZGZyKXRIoikcBMmkNeaMKA0i66O3jXrvlsjd-oVdO6OoxUsZQ0HMYDFB0g7RrvnSnV2tkPcDsVE7VPSoWk1CmpwN8fpeA1VKWDWlv_28RIKqjce8WB-7KV2f0vVf3Z8O-E40YhVLM9dYJ7V0EtuHp7mqjpKBvNyYAqTr8BXC-Gyg</recordid><startdate>200110</startdate><enddate>200110</enddate><creator>Pärssinen, J. H.</creator><creator>Zhu, J.-X.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>200110</creationdate><title>Axial and radial solids distribution in a long and high-flux CFB riser</title><author>Pärssinen, J. H. ; Zhu, J.-X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4157-63069838eb8a4ddaf3ee522c5be84f04b27bf3fec87b9097d29a4e6babdc04a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Fluidization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pärssinen, J. H.</creatorcontrib><creatorcontrib>Zhu, J.-X.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pärssinen, J. H.</au><au>Zhu, J.-X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axial and radial solids distribution in a long and high-flux CFB riser</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2001-10</date><risdate>2001</risdate><volume>47</volume><issue>10</issue><spage>2197</spage><epage>2205</epage><pages>2197-2205</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Radial solids concentration profiles were determined with a fiber‐optic probe on eight axial levels in a 76‐mm‐ID, 10‐m riser, at solids flux (solids circulation rate) up to 550 kg/m2·s and superficial gas velocity up to 10 m/s. Radial concentration profiles at high solids fluxes of over 300 kg/m2·s are less uniform than lower fluxes of less than 200 kg/m2·s. Under all operating conditions, the flow development in the riser center is nearly instant, with the solids concentration remaining low at the riser center throughout the riser. In the wall region, increasing solids flux significantly slows down the flow development, with the solids concentration near the wall decreasing all the way toward the riser top at high fluxes. In the high‐flux circulating fluidized bed (HFCFB), a middle section with intermediate solids holdups of about 7 to 20% was between the bottom dense section and top dilute section, with its length increasing as the solids circulation rate increases and as the gas velocity decreases. Flow conditions in this section resemble those of the dense suspension upflow under high‐density operating conditions by Grace et al. (1999). When its length extends to the riser top, a high‐density circulating fluidized bed for which an HFCFB is a necessary but not a sufficient condition, forms.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.690471007</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2001-10, Vol.47 (10), p.2197-2205 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_199393945 |
source | Access via Wiley Online Library |
subjects | Applied sciences Chemical engineering Exact sciences and technology Fluidization |
title | Axial and radial solids distribution in a long and high-flux CFB riser |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T00%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axial%20and%20radial%20solids%20distribution%20in%20a%20long%20and%20high-flux%20CFB%20riser&rft.jtitle=AIChE%20journal&rft.au=P%C3%A4rssinen,%20J.%20H.&rft.date=2001-10&rft.volume=47&rft.issue=10&rft.spage=2197&rft.epage=2205&rft.pages=2197-2205&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690471007&rft_dat=%3Cproquest_cross%3E88245134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199393945&rft_id=info:pmid/&rfr_iscdi=true |