Multicomponent space-charge transport model for ion-exchange membranes

A multicomponent space‐charge transport model for ion‐exchange membranes was developed, where the membrane structure was modeled as an array of cylindrical pores with a uniform distribution of fixed‐charge sites on the pore walls. Ion/fixed‐charge site electrostatic interactions, electric‐field‐indu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2000-06, Vol.46 (6), p.1177-1190
Hauptverfasser: Yang, Yahan, Pintauro, Peter N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1190
container_issue 6
container_start_page 1177
container_title AIChE journal
container_volume 46
creator Yang, Yahan
Pintauro, Peter N.
description A multicomponent space‐charge transport model for ion‐exchange membranes was developed, where the membrane structure was modeled as an array of cylindrical pores with a uniform distribution of fixed‐charge sites on the pore walls. Ion/fixed‐charge site electrostatic interactions, electric‐field‐induced water dipole orientation, ion‐hydration free‐energy changes during ion partitioning, and concentration‐dependent transport parameters were considered in the analysis. The model predicted experimental concentration vs. time data accurately for Donnan dialysis separations with a DuPont Nafion 117 cation‐exchange membrane, where the membrane separated a dilute H2SO4 solution from an aqueous mixture of either Cs2SO4 + Li2SO4 or Cs2SO4 + Na2SO4. Both computer predictions and experimental measurements showed that the alkali metal cation with the larger hard‐sphere radius (lower surface charge density) was selectively absorbed in and transported across the membrane during a multicomponent separation. The cation/cation transport permselectivity was less than the selectivity for equilibrium uptake due to slow ion transport near the pore wall, where discrimination between like‐charge cations was greatest.
doi_str_mv 10.1002/aic.690460610
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199390950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>56206899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4140-6eb97352e9a6c0aeff6596d4f0d3bce75c01ab3fe86475aa72c8b0a53cc71a963</originalsourceid><addsrcrecordid>eNp9kM1PwzAMxSMEEuPjyL1CXAtO0yTLcSoMEONLAnGM0syFjrYpSSfgvydoE3DiZNn6vWf7EXJA4ZgCZCemtsdCQS5AUNggI8pzmXIFfJOMAICmcUC3yU4Ii9hlcpyNyPR62Qy1dW3vOuyGJPTGYmpfjH_GZPCmC73zQ9K6OTZJ5XxSuy7Fjwh0EWixLSODYY9sVaYJuL-uu-RxevZQXKSz2_PLYjJLbU5zSAWWSjKeoTLCgsGqElyJeV7BnJUWJbdATckqHItccmNkZsclGM6sldQowXbJ4cq39-5tiWHQC7f0XVypqVJMgeIQoXQFWe9C8Fjp3tet8Z-agv5OSsek9E9SkT9am5pgTVPFj2wdfkV5xhnwiMkV9l43-Pm_p55cFn8XrA-qw4AfP0rjX7WQTHL9dHOui9PTq_uLO6pn7Asqy4hR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199390950</pqid></control><display><type>article</type><title>Multicomponent space-charge transport model for ion-exchange membranes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Yahan ; Pintauro, Peter N.</creator><creatorcontrib>Yang, Yahan ; Pintauro, Peter N.</creatorcontrib><description>A multicomponent space‐charge transport model for ion‐exchange membranes was developed, where the membrane structure was modeled as an array of cylindrical pores with a uniform distribution of fixed‐charge sites on the pore walls. Ion/fixed‐charge site electrostatic interactions, electric‐field‐induced water dipole orientation, ion‐hydration free‐energy changes during ion partitioning, and concentration‐dependent transport parameters were considered in the analysis. The model predicted experimental concentration vs. time data accurately for Donnan dialysis separations with a DuPont Nafion 117 cation‐exchange membrane, where the membrane separated a dilute H2SO4 solution from an aqueous mixture of either Cs2SO4 + Li2SO4 or Cs2SO4 + Na2SO4. Both computer predictions and experimental measurements showed that the alkali metal cation with the larger hard‐sphere radius (lower surface charge density) was selectively absorbed in and transported across the membrane during a multicomponent separation. The cation/cation transport permselectivity was less than the selectivity for equilibrium uptake due to slow ion transport near the pore wall, where discrimination between like‐charge cations was greatest.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690460610</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Exact sciences and technology ; Exchange resins and membranes ; Forms of application and semi-finished materials ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>AIChE journal, 2000-06, Vol.46 (6), p.1177-1190</ispartof><rights>Copyright © 2000 American Institute of Chemical Engineers (AIChE)</rights><rights>2000 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Jun 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4140-6eb97352e9a6c0aeff6596d4f0d3bce75c01ab3fe86475aa72c8b0a53cc71a963</citedby><cites>FETCH-LOGICAL-c4140-6eb97352e9a6c0aeff6596d4f0d3bce75c01ab3fe86475aa72c8b0a53cc71a963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690460610$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690460610$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1425305$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yahan</creatorcontrib><creatorcontrib>Pintauro, Peter N.</creatorcontrib><title>Multicomponent space-charge transport model for ion-exchange membranes</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>A multicomponent space‐charge transport model for ion‐exchange membranes was developed, where the membrane structure was modeled as an array of cylindrical pores with a uniform distribution of fixed‐charge sites on the pore walls. Ion/fixed‐charge site electrostatic interactions, electric‐field‐induced water dipole orientation, ion‐hydration free‐energy changes during ion partitioning, and concentration‐dependent transport parameters were considered in the analysis. The model predicted experimental concentration vs. time data accurately for Donnan dialysis separations with a DuPont Nafion 117 cation‐exchange membrane, where the membrane separated a dilute H2SO4 solution from an aqueous mixture of either Cs2SO4 + Li2SO4 or Cs2SO4 + Na2SO4. Both computer predictions and experimental measurements showed that the alkali metal cation with the larger hard‐sphere radius (lower surface charge density) was selectively absorbed in and transported across the membrane during a multicomponent separation. The cation/cation transport permselectivity was less than the selectivity for equilibrium uptake due to slow ion transport near the pore wall, where discrimination between like‐charge cations was greatest.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Exchange resins and membranes</subject><subject>Forms of application and semi-finished materials</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1PwzAMxSMEEuPjyL1CXAtO0yTLcSoMEONLAnGM0syFjrYpSSfgvydoE3DiZNn6vWf7EXJA4ZgCZCemtsdCQS5AUNggI8pzmXIFfJOMAICmcUC3yU4Ii9hlcpyNyPR62Qy1dW3vOuyGJPTGYmpfjH_GZPCmC73zQ9K6OTZJ5XxSuy7Fjwh0EWixLSODYY9sVaYJuL-uu-RxevZQXKSz2_PLYjJLbU5zSAWWSjKeoTLCgsGqElyJeV7BnJUWJbdATckqHItccmNkZsclGM6sldQowXbJ4cq39-5tiWHQC7f0XVypqVJMgeIQoXQFWe9C8Fjp3tet8Z-agv5OSsek9E9SkT9am5pgTVPFj2wdfkV5xhnwiMkV9l43-Pm_p55cFn8XrA-qw4AfP0rjX7WQTHL9dHOui9PTq_uLO6pn7Asqy4hR</recordid><startdate>200006</startdate><enddate>200006</enddate><creator>Yang, Yahan</creator><creator>Pintauro, Peter N.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>200006</creationdate><title>Multicomponent space-charge transport model for ion-exchange membranes</title><author>Yang, Yahan ; Pintauro, Peter N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4140-6eb97352e9a6c0aeff6596d4f0d3bce75c01ab3fe86475aa72c8b0a53cc71a963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Exchange resins and membranes</topic><topic>Forms of application and semi-finished materials</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yahan</creatorcontrib><creatorcontrib>Pintauro, Peter N.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yahan</au><au>Pintauro, Peter N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicomponent space-charge transport model for ion-exchange membranes</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2000-06</date><risdate>2000</risdate><volume>46</volume><issue>6</issue><spage>1177</spage><epage>1190</epage><pages>1177-1190</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>A multicomponent space‐charge transport model for ion‐exchange membranes was developed, where the membrane structure was modeled as an array of cylindrical pores with a uniform distribution of fixed‐charge sites on the pore walls. Ion/fixed‐charge site electrostatic interactions, electric‐field‐induced water dipole orientation, ion‐hydration free‐energy changes during ion partitioning, and concentration‐dependent transport parameters were considered in the analysis. The model predicted experimental concentration vs. time data accurately for Donnan dialysis separations with a DuPont Nafion 117 cation‐exchange membrane, where the membrane separated a dilute H2SO4 solution from an aqueous mixture of either Cs2SO4 + Li2SO4 or Cs2SO4 + Na2SO4. Both computer predictions and experimental measurements showed that the alkali metal cation with the larger hard‐sphere radius (lower surface charge density) was selectively absorbed in and transported across the membrane during a multicomponent separation. The cation/cation transport permselectivity was less than the selectivity for equilibrium uptake due to slow ion transport near the pore wall, where discrimination between like‐charge cations was greatest.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.690460610</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2000-06, Vol.46 (6), p.1177-1190
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_199390950
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Exact sciences and technology
Exchange resins and membranes
Forms of application and semi-finished materials
Polymer industry, paints, wood
Technology of polymers
title Multicomponent space-charge transport model for ion-exchange membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicomponent%20space-charge%20transport%20model%20for%20ion-exchange%20membranes&rft.jtitle=AIChE%20journal&rft.au=Yang,%20Yahan&rft.date=2000-06&rft.volume=46&rft.issue=6&rft.spage=1177&rft.epage=1190&rft.pages=1177-1190&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690460610&rft_dat=%3Cproquest_cross%3E56206899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199390950&rft_id=info:pmid/&rfr_iscdi=true