Spanning the flow regimes: Generic fluidized-bed reactor model
Probabilistic averaging is used to model fluidized‐bed reactors across the three fluidlization flow regimes most commonly encountered in industry (bubbling, turbulent, and fast fluidization), extending earlier work, which introduced this approach to bridge the bubbling and turbulent regimes of fluid...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2003-07, Vol.49 (7), p.1838-1848 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1848 |
---|---|
container_issue | 7 |
container_start_page | 1838 |
container_title | AIChE journal |
container_volume | 49 |
creator | Abba, I. A. Grace, J. R. Bi, H. T. Thompson, M. L. |
description | Probabilistic averaging is used to model fluidized‐bed reactors across the three fluidlization flow regimes most commonly encountered in industry (bubbling, turbulent, and fast fluidization), extending earlier work, which introduced this approach to bridge the bubbling and turbulent regimes of fluidization. In extending this concept to the fast fluidization regime, the probabilities of being in each of the three regimes are represented as probability density functions derived from regime boundary transition data. The three regime‐specific models—a generalized version of a two‐phase bubbling bed model at low gas velocities, a dispersed flow model for turbulent beds at intermediate velocities, and a generalized version of a core‐annulus model at higher velocities—are employed, leading to improved predictions compared with any of the individual models, while avoiding discontinuities at the regime boundaries. Predictions from the new integrated model are in good agreement with available ozone decomposition data over the full range of applicability covered elsewhere. |
doi_str_mv | 10.1002/aic.690490720 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199386874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>379321171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4150-623c0687d7cdc993f492899f5a3eadc6aa645d42e4ba9330bcf156839c2a6fd63</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujiYgevW9MPC72u1sPJoYokhA8oOHYlLaLxWUX2yWIv94aCHry1HTmmWcmLwCXCPYQhPhGe9PjElIJBYZHoIMYFTmTkB2DDoQQ5amATsFZjIv0w6LAHXA3Wem69vU8a99cVlbNJgtu7pcu3mYDV7vgTaquvfVfzuYzZ1Nbm7YJ2bKxrjoHJ6WuorvYv13w-vjw0n_KR8-DYf9-lBuKGMw5JgbyQlhhrJGSlFTiQsqSaeK0NVxrTpml2NGZloTAmSkR4wWRBmteWk664GrnXYXmY-1iqxbNOtRppULJVyQ3TVC-g0xoYgyuVKvglzpsFYLqJyGVElKHhBJ_vZfqaHRVBl0bH3-HqExnEpI4seM2vnLb_6Xqftj_u2F_kY-t-zxM6vCuuCCCqel4oEgxnhScj9SUfAPHmYQf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199386874</pqid></control><display><type>article</type><title>Spanning the flow regimes: Generic fluidized-bed reactor model</title><source>Wiley Journals</source><creator>Abba, I. A. ; Grace, J. R. ; Bi, H. T. ; Thompson, M. L.</creator><creatorcontrib>Abba, I. A. ; Grace, J. R. ; Bi, H. T. ; Thompson, M. L.</creatorcontrib><description>Probabilistic averaging is used to model fluidized‐bed reactors across the three fluidlization flow regimes most commonly encountered in industry (bubbling, turbulent, and fast fluidization), extending earlier work, which introduced this approach to bridge the bubbling and turbulent regimes of fluidization. In extending this concept to the fast fluidization regime, the probabilities of being in each of the three regimes are represented as probability density functions derived from regime boundary transition data. The three regime‐specific models—a generalized version of a two‐phase bubbling bed model at low gas velocities, a dispersed flow model for turbulent beds at intermediate velocities, and a generalized version of a core‐annulus model at higher velocities—are employed, leading to improved predictions compared with any of the individual models, while avoiding discontinuities at the regime boundaries. Predictions from the new integrated model are in good agreement with available ozone decomposition data over the full range of applicability covered elsewhere.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690490720</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; Reactors</subject><ispartof>AIChE journal, 2003-07, Vol.49 (7), p.1838-1848</ispartof><rights>Copyright © 2003 American Institute of Chemical Engineers (AIChE)</rights><rights>2003 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Jul 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4150-623c0687d7cdc993f492899f5a3eadc6aa645d42e4ba9330bcf156839c2a6fd63</citedby><cites>FETCH-LOGICAL-c4150-623c0687d7cdc993f492899f5a3eadc6aa645d42e4ba9330bcf156839c2a6fd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690490720$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690490720$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14949233$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abba, I. A.</creatorcontrib><creatorcontrib>Grace, J. R.</creatorcontrib><creatorcontrib>Bi, H. T.</creatorcontrib><creatorcontrib>Thompson, M. L.</creatorcontrib><title>Spanning the flow regimes: Generic fluidized-bed reactor model</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Probabilistic averaging is used to model fluidized‐bed reactors across the three fluidlization flow regimes most commonly encountered in industry (bubbling, turbulent, and fast fluidization), extending earlier work, which introduced this approach to bridge the bubbling and turbulent regimes of fluidization. In extending this concept to the fast fluidization regime, the probabilities of being in each of the three regimes are represented as probability density functions derived from regime boundary transition data. The three regime‐specific models—a generalized version of a two‐phase bubbling bed model at low gas velocities, a dispersed flow model for turbulent beds at intermediate velocities, and a generalized version of a core‐annulus model at higher velocities—are employed, leading to improved predictions compared with any of the individual models, while avoiding discontinuities at the regime boundaries. Predictions from the new integrated model are in good agreement with available ozone decomposition data over the full range of applicability covered elsewhere.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Reactors</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1PAjEQhhujiYgevW9MPC72u1sPJoYokhA8oOHYlLaLxWUX2yWIv94aCHry1HTmmWcmLwCXCPYQhPhGe9PjElIJBYZHoIMYFTmTkB2DDoQQ5amATsFZjIv0w6LAHXA3Wem69vU8a99cVlbNJgtu7pcu3mYDV7vgTaquvfVfzuYzZ1Nbm7YJ2bKxrjoHJ6WuorvYv13w-vjw0n_KR8-DYf9-lBuKGMw5JgbyQlhhrJGSlFTiQsqSaeK0NVxrTpml2NGZloTAmSkR4wWRBmteWk664GrnXYXmY-1iqxbNOtRppULJVyQ3TVC-g0xoYgyuVKvglzpsFYLqJyGVElKHhBJ_vZfqaHRVBl0bH3-HqExnEpI4seM2vnLb_6Xqftj_u2F_kY-t-zxM6vCuuCCCqel4oEgxnhScj9SUfAPHmYQf</recordid><startdate>200307</startdate><enddate>200307</enddate><creator>Abba, I. A.</creator><creator>Grace, J. R.</creator><creator>Bi, H. T.</creator><creator>Thompson, M. L.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>200307</creationdate><title>Spanning the flow regimes: Generic fluidized-bed reactor model</title><author>Abba, I. A. ; Grace, J. R. ; Bi, H. T. ; Thompson, M. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4150-623c0687d7cdc993f492899f5a3eadc6aa645d42e4ba9330bcf156839c2a6fd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Reactors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abba, I. A.</creatorcontrib><creatorcontrib>Grace, J. R.</creatorcontrib><creatorcontrib>Bi, H. T.</creatorcontrib><creatorcontrib>Thompson, M. L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abba, I. A.</au><au>Grace, J. R.</au><au>Bi, H. T.</au><au>Thompson, M. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spanning the flow regimes: Generic fluidized-bed reactor model</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2003-07</date><risdate>2003</risdate><volume>49</volume><issue>7</issue><spage>1838</spage><epage>1848</epage><pages>1838-1848</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Probabilistic averaging is used to model fluidized‐bed reactors across the three fluidlization flow regimes most commonly encountered in industry (bubbling, turbulent, and fast fluidization), extending earlier work, which introduced this approach to bridge the bubbling and turbulent regimes of fluidization. In extending this concept to the fast fluidization regime, the probabilities of being in each of the three regimes are represented as probability density functions derived from regime boundary transition data. The three regime‐specific models—a generalized version of a two‐phase bubbling bed model at low gas velocities, a dispersed flow model for turbulent beds at intermediate velocities, and a generalized version of a core‐annulus model at higher velocities—are employed, leading to improved predictions compared with any of the individual models, while avoiding discontinuities at the regime boundaries. Predictions from the new integrated model are in good agreement with available ozone decomposition data over the full range of applicability covered elsewhere.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.690490720</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2003-07, Vol.49 (7), p.1838-1848 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_199386874 |
source | Wiley Journals |
subjects | Applied sciences Chemical engineering Exact sciences and technology Reactors |
title | Spanning the flow regimes: Generic fluidized-bed reactor model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A41%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spanning%20the%20flow%20regimes:%20Generic%20fluidized-bed%20reactor%20model&rft.jtitle=AIChE%20journal&rft.au=Abba,%20I.%20A.&rft.date=2003-07&rft.volume=49&rft.issue=7&rft.spage=1838&rft.epage=1848&rft.pages=1838-1848&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690490720&rft_dat=%3Cproquest_cross%3E379321171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199386874&rft_id=info:pmid/&rfr_iscdi=true |