Optimal-grade transition strategies for multistage polyolefin reactors
Polymer‐producing companies normally produce many polymer grades in each polymerization reactor train according to customer demands; therefore, many grade‐transition operations are necessary. However, the determination of these optimal strategies is difficult. To solve this problem, several sample s...
Gespeichert in:
Veröffentlicht in: | AIChE journal 1999-08, Vol.45 (8), p.1776-1793 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1793 |
---|---|
container_issue | 8 |
container_start_page | 1776 |
container_title | AIChE journal |
container_volume | 45 |
creator | Takeda, Makoto Ray, W. Harmon |
description | Polymer‐producing companies normally produce many polymer grades in each polymerization reactor train according to customer demands; therefore, many grade‐transition operations are necessary. However, the determination of these optimal strategies is difficult. To solve this problem, several sample simulations showing the optimal solutions of grade‐transition strategies for multistage olefin polymerization reactors with bimodal products were performed. The methodology utilized a dynamic process simulator, POLYRED, coupled to a sequential quadratic programming, nonlinear optimization algorithm, by using two different objective functions with and without state constraints. It is shown that the most beneficial case of using the optimization technology is the grade transition where the hydrogen content in a reactor must be decreased and/or constraints are imposed on state variables. |
doi_str_mv | 10.1002/aic.690450813 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199374222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>44152917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4803-ef7a65a8d77d5f8b7961f72c87298ca41e081dfdc0509281ce88c954d5d4f6783</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFo9et8Yr1uBXRY4No2tTRobv-qRIAsNdbusQKP992LaVE-egMkz7wwPAJcIDhCE-EZaNag4LAlkqDgCPURKmhMOyTHoQQhRngroFJyFsEovTBnugfG8i3Ytm3zpZa2z6GUbbLSuzUK6R720OmTG-Wy9aaINUS511rlm6xptbJt5LVV0PpyDEyOboC_2Zx-8jG-fR3f5bD6ZjoazXJUMFrk2VFZEsprSmhj2RnmFDMWKUcyZkiXSafXa1AoSyDFDSjOmOClrUpemoqzog6tdbufdx0aHKFZu49s0UiDOC1pijBOU7yDlXQheG9H59Ee_FQiKH1MimRIHU4m_3ofKoGRjkgNlw28TrzClKGF0h33aRm__zxTD6ejvgP1CSaD-OnRK_y4qWlAiXu8nAvPJ4uGpWIjH4hsl5Yg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199374222</pqid></control><display><type>article</type><title>Optimal-grade transition strategies for multistage polyolefin reactors</title><source>Wiley Online Library All Journals</source><creator>Takeda, Makoto ; Ray, W. Harmon</creator><creatorcontrib>Takeda, Makoto ; Ray, W. Harmon</creatorcontrib><description>Polymer‐producing companies normally produce many polymer grades in each polymerization reactor train according to customer demands; therefore, many grade‐transition operations are necessary. However, the determination of these optimal strategies is difficult. To solve this problem, several sample simulations showing the optimal solutions of grade‐transition strategies for multistage olefin polymerization reactors with bimodal products were performed. The methodology utilized a dynamic process simulator, POLYRED, coupled to a sequential quadratic programming, nonlinear optimization algorithm, by using two different objective functions with and without state constraints. It is shown that the most beneficial case of using the optimization technology is the grade transition where the hydrogen content in a reactor must be decreased and/or constraints are imposed on state variables.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690450813</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Exact sciences and technology ; Industrial polymers. Preparations ; Polymer industry, paints, wood ; Technology of polymers ; Thermoplastics</subject><ispartof>AIChE journal, 1999-08, Vol.45 (8), p.1776-1793</ispartof><rights>Copyright © 1999 American Institute of Chemical Engineers (AIChE)</rights><rights>1999 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Aug 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4803-ef7a65a8d77d5f8b7961f72c87298ca41e081dfdc0509281ce88c954d5d4f6783</citedby><cites>FETCH-LOGICAL-c4803-ef7a65a8d77d5f8b7961f72c87298ca41e081dfdc0509281ce88c954d5d4f6783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690450813$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690450813$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1962771$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Takeda, Makoto</creatorcontrib><creatorcontrib>Ray, W. Harmon</creatorcontrib><title>Optimal-grade transition strategies for multistage polyolefin reactors</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Polymer‐producing companies normally produce many polymer grades in each polymerization reactor train according to customer demands; therefore, many grade‐transition operations are necessary. However, the determination of these optimal strategies is difficult. To solve this problem, several sample simulations showing the optimal solutions of grade‐transition strategies for multistage olefin polymerization reactors with bimodal products were performed. The methodology utilized a dynamic process simulator, POLYRED, coupled to a sequential quadratic programming, nonlinear optimization algorithm, by using two different objective functions with and without state constraints. It is shown that the most beneficial case of using the optimization technology is the grade transition where the hydrogen content in a reactor must be decreased and/or constraints are imposed on state variables.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Industrial polymers. Preparations</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><subject>Thermoplastics</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1PAyEQhonRxFo9et8Yr1uBXRY4No2tTRobv-qRIAsNdbusQKP992LaVE-egMkz7wwPAJcIDhCE-EZaNag4LAlkqDgCPURKmhMOyTHoQQhRngroFJyFsEovTBnugfG8i3Ytm3zpZa2z6GUbbLSuzUK6R720OmTG-Wy9aaINUS511rlm6xptbJt5LVV0PpyDEyOboC_2Zx-8jG-fR3f5bD6ZjoazXJUMFrk2VFZEsprSmhj2RnmFDMWKUcyZkiXSafXa1AoSyDFDSjOmOClrUpemoqzog6tdbufdx0aHKFZu49s0UiDOC1pijBOU7yDlXQheG9H59Ee_FQiKH1MimRIHU4m_3ofKoGRjkgNlw28TrzClKGF0h33aRm__zxTD6ejvgP1CSaD-OnRK_y4qWlAiXu8nAvPJ4uGpWIjH4hsl5Yg4</recordid><startdate>199908</startdate><enddate>199908</enddate><creator>Takeda, Makoto</creator><creator>Ray, W. Harmon</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>199908</creationdate><title>Optimal-grade transition strategies for multistage polyolefin reactors</title><author>Takeda, Makoto ; Ray, W. Harmon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4803-ef7a65a8d77d5f8b7961f72c87298ca41e081dfdc0509281ce88c954d5d4f6783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Industrial polymers. Preparations</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><topic>Thermoplastics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takeda, Makoto</creatorcontrib><creatorcontrib>Ray, W. Harmon</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takeda, Makoto</au><au>Ray, W. Harmon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal-grade transition strategies for multistage polyolefin reactors</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>1999-08</date><risdate>1999</risdate><volume>45</volume><issue>8</issue><spage>1776</spage><epage>1793</epage><pages>1776-1793</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Polymer‐producing companies normally produce many polymer grades in each polymerization reactor train according to customer demands; therefore, many grade‐transition operations are necessary. However, the determination of these optimal strategies is difficult. To solve this problem, several sample simulations showing the optimal solutions of grade‐transition strategies for multistage olefin polymerization reactors with bimodal products were performed. The methodology utilized a dynamic process simulator, POLYRED, coupled to a sequential quadratic programming, nonlinear optimization algorithm, by using two different objective functions with and without state constraints. It is shown that the most beneficial case of using the optimization technology is the grade transition where the hydrogen content in a reactor must be decreased and/or constraints are imposed on state variables.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.690450813</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 1999-08, Vol.45 (8), p.1776-1793 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_199374222 |
source | Wiley Online Library All Journals |
subjects | Applied sciences Exact sciences and technology Industrial polymers. Preparations Polymer industry, paints, wood Technology of polymers Thermoplastics |
title | Optimal-grade transition strategies for multistage polyolefin reactors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal-grade%20transition%20strategies%20for%20multistage%20polyolefin%20reactors&rft.jtitle=AIChE%20journal&rft.au=Takeda,%20Makoto&rft.date=1999-08&rft.volume=45&rft.issue=8&rft.spage=1776&rft.epage=1793&rft.pages=1776-1793&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690450813&rft_dat=%3Cproquest_cross%3E44152917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199374222&rft_id=info:pmid/&rfr_iscdi=true |