Mixed hydrates of methane and water-soluble hydrocarbons modeling of empirical results
The hydrate disappearance conditions (H − Lw − V → Lw − V transition) in the water–methane–water‐soluble hydrocarbon system were measured and modeled. The hydrocarbons in the experiments are tetrahydrofuran (THF), 1,3‐dioxolane and tetrahydropyran, and THF, 1,3‐dioxolane and acetone in the modeling...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2001-03, Vol.47 (3), p.693-704 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 704 |
---|---|
container_issue | 3 |
container_start_page | 693 |
container_title | AIChE journal |
container_volume | 47 |
creator | de Deugd, R. M. Jager, M. D. de Swaan Arons, J. |
description | The hydrate disappearance conditions (H − Lw − V → Lw − V transition) in the water–methane–water‐soluble hydrocarbon system were measured and modeled. The hydrocarbons in the experiments are tetrahydrofuran (THF), 1,3‐dioxolane and tetrahydropyran, and THF, 1,3‐dioxolane and acetone in the modeling study. Experiments and calculations, which correspond qualitatively and quantitatively very well, show a large reduction in the equilibrium pressure upon addition of the hydrocarbons. The minimum pressure is about 5–6 mol % hydrocarbon relative to water, independent of temperature and applied hydrocarbon, with the composition almost equal to the ratio between the number of large cages and water molecules in structure II hydrates (5.88%). Based on this observation, the hydrates are assumed to be structure II methane–hydrocarbon mixed hydrates. The model is also used to calculate the occupancies of the hydrate cavities. No experimental data are available to compare the predicted values, but the results help understand observed phenomena better. |
doi_str_mv | 10.1002/aic.690470316 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199369057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70198341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4806-d676986b659d4b0392e89d5a8f48d3d157506b30ca42a65e8b200456d9d406bd3</originalsourceid><addsrcrecordid>eNp9kM9PwyAcxYnRxDk9em_03AmlQDku09WZqYnxx5HQQh2zKxPabPvvZW5ZPHkiPD7vfb88AC4RHCAIkxtpygHlMGUQI3oEeoikLCYckmPQgxCiOAjoFJx5Pw-3hGVJD7w_mrVW0WyjnGy1j2wVLXQ7k42OZKOiVRBd7G3dFbX-pWwpXWEbHy2s0rVpPrcWvVgaZ0pZR077rm79OTipZO31xf7sg7fx3evoPp4-55PRcBqXaQZprCijPKMFJVylBcQ80RlXRGZVmimsEGEE0gLDUqaJpERnRQJhSqgKeHhQuA-udrlLZ7877Vsxt51rwkiBOMehDcICFO-g0lnvna7E0pmFdBuBoNg2J0Jz4tBc4K_3odKHP1VONqXxB1PgMo4DxXbUytR683-kGE5Gf_P3-xjf6vXBKd2XoAwzIj6ecvFCbx_GNOcixz9hKIyT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199369057</pqid></control><display><type>article</type><title>Mixed hydrates of methane and water-soluble hydrocarbons modeling of empirical results</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>de Deugd, R. M. ; Jager, M. D. ; de Swaan Arons, J.</creator><creatorcontrib>de Deugd, R. M. ; Jager, M. D. ; de Swaan Arons, J.</creatorcontrib><description>The hydrate disappearance conditions (H − Lw − V → Lw − V transition) in the water–methane–water‐soluble hydrocarbon system were measured and modeled. The hydrocarbons in the experiments are tetrahydrofuran (THF), 1,3‐dioxolane and tetrahydropyran, and THF, 1,3‐dioxolane and acetone in the modeling study. Experiments and calculations, which correspond qualitatively and quantitatively very well, show a large reduction in the equilibrium pressure upon addition of the hydrocarbons. The minimum pressure is about 5–6 mol % hydrocarbon relative to water, independent of temperature and applied hydrocarbon, with the composition almost equal to the ratio between the number of large cages and water molecules in structure II hydrates (5.88%). Based on this observation, the hydrates are assumed to be structure II methane–hydrocarbon mixed hydrates. The model is also used to calculate the occupancies of the hydrate cavities. No experimental data are available to compare the predicted values, but the results help understand observed phenomena better.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690470316</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Chemical thermodynamics ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Mixtures ; Thermodynamic properties</subject><ispartof>AIChE journal, 2001-03, Vol.47 (3), p.693-704</ispartof><rights>Copyright © 2001 American Institute of Chemical Engineers (AIChE)</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Mar 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4806-d676986b659d4b0392e89d5a8f48d3d157506b30ca42a65e8b200456d9d406bd3</citedby><cites>FETCH-LOGICAL-c4806-d676986b659d4b0392e89d5a8f48d3d157506b30ca42a65e8b200456d9d406bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690470316$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690470316$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=904893$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>de Deugd, R. M.</creatorcontrib><creatorcontrib>Jager, M. D.</creatorcontrib><creatorcontrib>de Swaan Arons, J.</creatorcontrib><title>Mixed hydrates of methane and water-soluble hydrocarbons modeling of empirical results</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>The hydrate disappearance conditions (H − Lw − V → Lw − V transition) in the water–methane–water‐soluble hydrocarbon system were measured and modeled. The hydrocarbons in the experiments are tetrahydrofuran (THF), 1,3‐dioxolane and tetrahydropyran, and THF, 1,3‐dioxolane and acetone in the modeling study. Experiments and calculations, which correspond qualitatively and quantitatively very well, show a large reduction in the equilibrium pressure upon addition of the hydrocarbons. The minimum pressure is about 5–6 mol % hydrocarbon relative to water, independent of temperature and applied hydrocarbon, with the composition almost equal to the ratio between the number of large cages and water molecules in structure II hydrates (5.88%). Based on this observation, the hydrates are assumed to be structure II methane–hydrocarbon mixed hydrates. The model is also used to calculate the occupancies of the hydrate cavities. No experimental data are available to compare the predicted values, but the results help understand observed phenomena better.</description><subject>Chemical thermodynamics</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Mixtures</subject><subject>Thermodynamic properties</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM9PwyAcxYnRxDk9em_03AmlQDku09WZqYnxx5HQQh2zKxPabPvvZW5ZPHkiPD7vfb88AC4RHCAIkxtpygHlMGUQI3oEeoikLCYckmPQgxCiOAjoFJx5Pw-3hGVJD7w_mrVW0WyjnGy1j2wVLXQ7k42OZKOiVRBd7G3dFbX-pWwpXWEbHy2s0rVpPrcWvVgaZ0pZR077rm79OTipZO31xf7sg7fx3evoPp4-55PRcBqXaQZprCijPKMFJVylBcQ80RlXRGZVmimsEGEE0gLDUqaJpERnRQJhSqgKeHhQuA-udrlLZ7877Vsxt51rwkiBOMehDcICFO-g0lnvna7E0pmFdBuBoNg2J0Jz4tBc4K_3odKHP1VONqXxB1PgMo4DxXbUytR683-kGE5Gf_P3-xjf6vXBKd2XoAwzIj6ecvFCbx_GNOcixz9hKIyT</recordid><startdate>200103</startdate><enddate>200103</enddate><creator>de Deugd, R. M.</creator><creator>Jager, M. D.</creator><creator>de Swaan Arons, J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>200103</creationdate><title>Mixed hydrates of methane and water-soluble hydrocarbons modeling of empirical results</title><author>de Deugd, R. M. ; Jager, M. D. ; de Swaan Arons, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4806-d676986b659d4b0392e89d5a8f48d3d157506b30ca42a65e8b200456d9d406bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Chemical thermodynamics</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Mixtures</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Deugd, R. M.</creatorcontrib><creatorcontrib>Jager, M. D.</creatorcontrib><creatorcontrib>de Swaan Arons, J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Deugd, R. M.</au><au>Jager, M. D.</au><au>de Swaan Arons, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed hydrates of methane and water-soluble hydrocarbons modeling of empirical results</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2001-03</date><risdate>2001</risdate><volume>47</volume><issue>3</issue><spage>693</spage><epage>704</epage><pages>693-704</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>The hydrate disappearance conditions (H − Lw − V → Lw − V transition) in the water–methane–water‐soluble hydrocarbon system were measured and modeled. The hydrocarbons in the experiments are tetrahydrofuran (THF), 1,3‐dioxolane and tetrahydropyran, and THF, 1,3‐dioxolane and acetone in the modeling study. Experiments and calculations, which correspond qualitatively and quantitatively very well, show a large reduction in the equilibrium pressure upon addition of the hydrocarbons. The minimum pressure is about 5–6 mol % hydrocarbon relative to water, independent of temperature and applied hydrocarbon, with the composition almost equal to the ratio between the number of large cages and water molecules in structure II hydrates (5.88%). Based on this observation, the hydrates are assumed to be structure II methane–hydrocarbon mixed hydrates. The model is also used to calculate the occupancies of the hydrate cavities. No experimental data are available to compare the predicted values, but the results help understand observed phenomena better.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.690470316</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2001-03, Vol.47 (3), p.693-704 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_199369057 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chemical thermodynamics Chemistry Exact sciences and technology General and physical chemistry Mixtures Thermodynamic properties |
title | Mixed hydrates of methane and water-soluble hydrocarbons modeling of empirical results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20hydrates%20of%20methane%20and%20water-soluble%20hydrocarbons%20modeling%20of%20empirical%20results&rft.jtitle=AIChE%20journal&rft.au=de%20Deugd,%20R.%20M.&rft.date=2001-03&rft.volume=47&rft.issue=3&rft.spage=693&rft.epage=704&rft.pages=693-704&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690470316&rft_dat=%3Cproquest_cross%3E70198341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199369057&rft_id=info:pmid/&rfr_iscdi=true |