Thermoelectric Properties for a Suspended Microribbon of Quasi-One-Dimensional TiS3

Transition-metal trichalcogenides MX 3 (M = Ti, Zr, Nb, Ta; X = S, Se) are well-known inorganic quasi-one-dimensional conductors. Among them, we have investigated the thermoelectric properties of titanium trisulfide TiS 3 microribbon. The electrical resistivity ρ , thermal conductivity κ , and therm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2018-06, Vol.47 (6), p.3177-3183
Hauptverfasser: Sakuma, Tasuku, Nishino, Shunsuke, Miyata, Masanobu, Koyano, Mikio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3183
container_issue 6
container_start_page 3177
container_title Journal of electronic materials
container_volume 47
creator Sakuma, Tasuku
Nishino, Shunsuke
Miyata, Masanobu
Koyano, Mikio
description Transition-metal trichalcogenides MX 3 (M = Ti, Zr, Nb, Ta; X = S, Se) are well-known inorganic quasi-one-dimensional conductors. Among them, we have investigated the thermoelectric properties of titanium trisulfide TiS 3 microribbon. The electrical resistivity ρ , thermal conductivity κ , and thermoelectric power S were measured using 3 ω method. The weight mean values were found to be ρ  = 5 mω m and κ  = 10 W K −1  m −1 along the one-dimensional direction ( b -axis) of the TiS 3 microribbon. Combined with the thermoelectric power S  = −530  μ V K −1 , the figure of merit was calculated as ZT  = 0.0023. This efficiency is the same as that of randomly oriented bulk TiS 3 . We also estimated the anisotropy of σ and κ using the present results and those for randomly oriented bulk material. The obtained weak anisotropy for TiS 3 is attributable to strong coupling between triangular columns consisting of TiS 3 units. These experimental results are consistent with theoretical results obtained using density functional theory (DFT) calculations.
doi_str_mv 10.1007/s11664-018-6086-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1993656397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993656397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6cfc92384366f85b23c796991d2b709fd303da9b982d11979dc972953a3d59c3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9gsMRv88monHlH5lIoKagY2K7EdcNXGwU4H-utJFQYWpruce3V1CLkEfg2c5zcJQMoZ41AwyQvJ9kdkAmKGDAr5fkwmHCUwkaE4JWcprTkHAQVMyKr8dHEb3MaZPnpDX2PoXOy9S7QJkVZ0tUuda62z9MWbGKKv69DS0NC3XZU8W7aO3fmta5MPbbWhpV_hOTlpqk1yF785JeXDfTl_Yovl4_P8dsEMguyZNI1RGRYzlLIpRJ2hyZVUCmxW51w1FjnaStWqyCyAypU1Ks-UwAqtUAan5Gqc7WL42rnU63XYxeFE0qAUSiFR5QMFIzWcTym6RnfRb6v4rYHrgzo9qtODOn1Qp_dDJxs7aWDbDxf_LP9b-gHyM3Et</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993656397</pqid></control><display><type>article</type><title>Thermoelectric Properties for a Suspended Microribbon of Quasi-One-Dimensional TiS3</title><source>SpringerLink Journals</source><creator>Sakuma, Tasuku ; Nishino, Shunsuke ; Miyata, Masanobu ; Koyano, Mikio</creator><creatorcontrib>Sakuma, Tasuku ; Nishino, Shunsuke ; Miyata, Masanobu ; Koyano, Mikio</creatorcontrib><description>Transition-metal trichalcogenides MX 3 (M = Ti, Zr, Nb, Ta; X = S, Se) are well-known inorganic quasi-one-dimensional conductors. Among them, we have investigated the thermoelectric properties of titanium trisulfide TiS 3 microribbon. The electrical resistivity ρ , thermal conductivity κ , and thermoelectric power S were measured using 3 ω method. The weight mean values were found to be ρ  = 5 mω m and κ  = 10 W K −1  m −1 along the one-dimensional direction ( b -axis) of the TiS 3 microribbon. Combined with the thermoelectric power S  = −530  μ V K −1 , the figure of merit was calculated as ZT  = 0.0023. This efficiency is the same as that of randomly oriented bulk TiS 3 . We also estimated the anisotropy of σ and κ using the present results and those for randomly oriented bulk material. The obtained weak anisotropy for TiS 3 is attributable to strong coupling between triangular columns consisting of TiS 3 units. These experimental results are consistent with theoretical results obtained using density functional theory (DFT) calculations.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-018-6086-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anisotropy ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Conductors ; Density functional theory ; Electrical resistivity ; Electronics and Microelectronics ; Figure of merit ; Instrumentation ; International Conference on Thermoelectrics 2017 ; Materials research ; Materials Science ; Mathematical analysis ; Niobium ; Optical and Electronic Materials ; Solid State Physics ; Tantalum ; Thermal conductivity ; Thermoelectricity ; Titanium ; Topical Collection: International Conference on Thermoelectrics 2017 ; Zirconium</subject><ispartof>Journal of electronic materials, 2018-06, Vol.47 (6), p.3177-3183</ispartof><rights>The Minerals, Metals &amp; Materials Society 2018</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6cfc92384366f85b23c796991d2b709fd303da9b982d11979dc972953a3d59c3</citedby><cites>FETCH-LOGICAL-c316t-6cfc92384366f85b23c796991d2b709fd303da9b982d11979dc972953a3d59c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-018-6086-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-018-6086-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sakuma, Tasuku</creatorcontrib><creatorcontrib>Nishino, Shunsuke</creatorcontrib><creatorcontrib>Miyata, Masanobu</creatorcontrib><creatorcontrib>Koyano, Mikio</creatorcontrib><title>Thermoelectric Properties for a Suspended Microribbon of Quasi-One-Dimensional TiS3</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Transition-metal trichalcogenides MX 3 (M = Ti, Zr, Nb, Ta; X = S, Se) are well-known inorganic quasi-one-dimensional conductors. Among them, we have investigated the thermoelectric properties of titanium trisulfide TiS 3 microribbon. The electrical resistivity ρ , thermal conductivity κ , and thermoelectric power S were measured using 3 ω method. The weight mean values were found to be ρ  = 5 mω m and κ  = 10 W K −1  m −1 along the one-dimensional direction ( b -axis) of the TiS 3 microribbon. Combined with the thermoelectric power S  = −530  μ V K −1 , the figure of merit was calculated as ZT  = 0.0023. This efficiency is the same as that of randomly oriented bulk TiS 3 . We also estimated the anisotropy of σ and κ using the present results and those for randomly oriented bulk material. The obtained weak anisotropy for TiS 3 is attributable to strong coupling between triangular columns consisting of TiS 3 units. These experimental results are consistent with theoretical results obtained using density functional theory (DFT) calculations.</description><subject>Anisotropy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Conductors</subject><subject>Density functional theory</subject><subject>Electrical resistivity</subject><subject>Electronics and Microelectronics</subject><subject>Figure of merit</subject><subject>Instrumentation</subject><subject>International Conference on Thermoelectrics 2017</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Niobium</subject><subject>Optical and Electronic Materials</subject><subject>Solid State Physics</subject><subject>Tantalum</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Titanium</subject><subject>Topical Collection: International Conference on Thermoelectrics 2017</subject><subject>Zirconium</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kD1PwzAURS0EEqXwA9gsMRv88monHlH5lIoKagY2K7EdcNXGwU4H-utJFQYWpruce3V1CLkEfg2c5zcJQMoZ41AwyQvJ9kdkAmKGDAr5fkwmHCUwkaE4JWcprTkHAQVMyKr8dHEb3MaZPnpDX2PoXOy9S7QJkVZ0tUuda62z9MWbGKKv69DS0NC3XZU8W7aO3fmta5MPbbWhpV_hOTlpqk1yF785JeXDfTl_Yovl4_P8dsEMguyZNI1RGRYzlLIpRJ2hyZVUCmxW51w1FjnaStWqyCyAypU1Ks-UwAqtUAan5Gqc7WL42rnU63XYxeFE0qAUSiFR5QMFIzWcTym6RnfRb6v4rYHrgzo9qtODOn1Qp_dDJxs7aWDbDxf_LP9b-gHyM3Et</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Sakuma, Tasuku</creator><creator>Nishino, Shunsuke</creator><creator>Miyata, Masanobu</creator><creator>Koyano, Mikio</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180601</creationdate><title>Thermoelectric Properties for a Suspended Microribbon of Quasi-One-Dimensional TiS3</title><author>Sakuma, Tasuku ; Nishino, Shunsuke ; Miyata, Masanobu ; Koyano, Mikio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6cfc92384366f85b23c796991d2b709fd303da9b982d11979dc972953a3d59c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Conductors</topic><topic>Density functional theory</topic><topic>Electrical resistivity</topic><topic>Electronics and Microelectronics</topic><topic>Figure of merit</topic><topic>Instrumentation</topic><topic>International Conference on Thermoelectrics 2017</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Niobium</topic><topic>Optical and Electronic Materials</topic><topic>Solid State Physics</topic><topic>Tantalum</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Titanium</topic><topic>Topical Collection: International Conference on Thermoelectrics 2017</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakuma, Tasuku</creatorcontrib><creatorcontrib>Nishino, Shunsuke</creatorcontrib><creatorcontrib>Miyata, Masanobu</creatorcontrib><creatorcontrib>Koyano, Mikio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakuma, Tasuku</au><au>Nishino, Shunsuke</au><au>Miyata, Masanobu</au><au>Koyano, Mikio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric Properties for a Suspended Microribbon of Quasi-One-Dimensional TiS3</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>47</volume><issue>6</issue><spage>3177</spage><epage>3183</epage><pages>3177-3183</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Transition-metal trichalcogenides MX 3 (M = Ti, Zr, Nb, Ta; X = S, Se) are well-known inorganic quasi-one-dimensional conductors. Among them, we have investigated the thermoelectric properties of titanium trisulfide TiS 3 microribbon. The electrical resistivity ρ , thermal conductivity κ , and thermoelectric power S were measured using 3 ω method. The weight mean values were found to be ρ  = 5 mω m and κ  = 10 W K −1  m −1 along the one-dimensional direction ( b -axis) of the TiS 3 microribbon. Combined with the thermoelectric power S  = −530  μ V K −1 , the figure of merit was calculated as ZT  = 0.0023. This efficiency is the same as that of randomly oriented bulk TiS 3 . We also estimated the anisotropy of σ and κ using the present results and those for randomly oriented bulk material. The obtained weak anisotropy for TiS 3 is attributable to strong coupling between triangular columns consisting of TiS 3 units. These experimental results are consistent with theoretical results obtained using density functional theory (DFT) calculations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-018-6086-z</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2018-06, Vol.47 (6), p.3177-3183
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_1993656397
source SpringerLink Journals
subjects Anisotropy
Characterization and Evaluation of Materials
Chemistry and Materials Science
Conductors
Density functional theory
Electrical resistivity
Electronics and Microelectronics
Figure of merit
Instrumentation
International Conference on Thermoelectrics 2017
Materials research
Materials Science
Mathematical analysis
Niobium
Optical and Electronic Materials
Solid State Physics
Tantalum
Thermal conductivity
Thermoelectricity
Titanium
Topical Collection: International Conference on Thermoelectrics 2017
Zirconium
title Thermoelectric Properties for a Suspended Microribbon of Quasi-One-Dimensional TiS3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20Properties%20for%20a%20Suspended%20Microribbon%20of%20Quasi-One-Dimensional%20TiS3&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Sakuma,%20Tasuku&rft.date=2018-06-01&rft.volume=47&rft.issue=6&rft.spage=3177&rft.epage=3183&rft.pages=3177-3183&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-018-6086-z&rft_dat=%3Cproquest_cross%3E1993656397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993656397&rft_id=info:pmid/&rfr_iscdi=true