Application of Quantitative Mineralogical Analysis in Archaeological Micromorphology: a Case Study from Barrow Is., Western Australia
This study assesses the use of the Tescan Integrated Mineral Analyser (TIMA) platform, which integrates scanning electron microscopy—energy dispersive spectroscopy (SEM-EDS) chemical analysis with mineral identification software, to quantitatively determine the mineralogical composition of sediments...
Gespeichert in:
Veröffentlicht in: | Journal of archaeological method and theory 2018-03, Vol.25 (1), p.45-68 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | 1 |
container_start_page | 45 |
container_title | Journal of archaeological method and theory |
container_volume | 25 |
creator | Ward, I. Merigot, K. McInnes, B. I. A. |
description | This study assesses the use of the Tescan Integrated Mineral Analyser (TIMA) platform, which integrates scanning electron microscopy—energy dispersive spectroscopy (SEM-EDS) chemical analysis with mineral identification software, to quantitatively determine the mineralogical composition of sediments in archaeological research. Ten samples, spanning 50,000 years of sedimentation, were examined from archaeological excavation profiles in the Boodie Cave, Barrow Island, Western Australia. TIMA mineral abundance data show a gradual change from a polymineralogic quartz-rich assemblage from ∼50–12 ka to a more simple carbonate-dominate assemblage from the terminal Pleistocene. This trend is consistent with a decreasing contribution of reworked terrestrial siliciclastic sediments derived from the mainland and an increase in carbonate sediments of marine derivation, as the exposed coastal plain become submerged during post-glacial sea-level rise. SEM-EDS analysis has also provided empirical data on cultural materials, mainly bone and shell fragments that similarly reflect the increasing contribution of marine fauna into the Holocene sediments. Particularly useful is the ability of mineral mapping function of the TIMA outputs to help distinguish 16 sub-units representing sections of the main nine stratigraphic units, including at least three contiguous midden events. The SEM-EDS data indicate that the redeposited sediments were derived from the overlying midden unit, with layering reflecting differential settling of mineral phases. This study demonstrates that automated mineralogy studies using TIMA can clearly aid the identification of provenance and processes within archaeological sediments and soils. |
doi_str_mv | 10.1007/s10816-017-9330-6 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1993643878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26748446</jstor_id><sourcerecordid>26748446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-2e327f1e587c0dc0c4ed941cc4dd6b094422e24f3dc8d321f994c8a0d98bebd53</originalsourceid><addsrcrecordid>eNp9UMtOGzEUHaEilQY-oAskS2yZ9PoRP9iFqC2RQKgqVZeWY3vA0TAe7JmifED_u44GKlas7uucc-89VfUZwxwDiC8Zg8S8BixqRSnU_KA6wgtBayE4-1ByEKReUK4-Vp9y3gIAJwBH1d9l37fBmiHEDsUG_RhNN4Sh1H88ugmdT6aN9wXQomVn2l0OGYUOLZN9MD6-jm6CTfExpv5h39pdIINWJnv0cxjdDjVlhi5NSvEZrfP8HP32efCpqIx5KPrBHFeHjWmzP3mJs-rXt693q6v6-vb7erW8ri2lcqiJp0Q02C-ksOAsWOadYtha5hzfgGKMEE9YQ52VjhLcKMWsNOCU3PiNW9BZdTbp9ik-jeUKvY1jKn9ljZWinFEpZEHhCVWeyjn5RvcpPJq00xj03m09ua2L23rvtuaFQyZOLtju3qc3yu-QTifSNg8x_d9CuGCSMU7_ATc3jgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993643878</pqid></control><display><type>article</type><title>Application of Quantitative Mineralogical Analysis in Archaeological Micromorphology: a Case Study from Barrow Is., Western Australia</title><source>SpringerNature Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Ward, I. ; Merigot, K. ; McInnes, B. I. A.</creator><creatorcontrib>Ward, I. ; Merigot, K. ; McInnes, B. I. A.</creatorcontrib><description>This study assesses the use of the Tescan Integrated Mineral Analyser (TIMA) platform, which integrates scanning electron microscopy—energy dispersive spectroscopy (SEM-EDS) chemical analysis with mineral identification software, to quantitatively determine the mineralogical composition of sediments in archaeological research. Ten samples, spanning 50,000 years of sedimentation, were examined from archaeological excavation profiles in the Boodie Cave, Barrow Island, Western Australia. TIMA mineral abundance data show a gradual change from a polymineralogic quartz-rich assemblage from ∼50–12 ka to a more simple carbonate-dominate assemblage from the terminal Pleistocene. This trend is consistent with a decreasing contribution of reworked terrestrial siliciclastic sediments derived from the mainland and an increase in carbonate sediments of marine derivation, as the exposed coastal plain become submerged during post-glacial sea-level rise. SEM-EDS analysis has also provided empirical data on cultural materials, mainly bone and shell fragments that similarly reflect the increasing contribution of marine fauna into the Holocene sediments. Particularly useful is the ability of mineral mapping function of the TIMA outputs to help distinguish 16 sub-units representing sections of the main nine stratigraphic units, including at least three contiguous midden events. The SEM-EDS data indicate that the redeposited sediments were derived from the overlying midden unit, with layering reflecting differential settling of mineral phases. This study demonstrates that automated mineralogy studies using TIMA can clearly aid the identification of provenance and processes within archaeological sediments and soils.</description><identifier>ISSN: 1072-5369</identifier><identifier>EISSN: 1573-7764</identifier><identifier>DOI: 10.1007/s10816-017-9330-6</identifier><language>eng</language><publisher>New York: Springer</publisher><subject>Anthropology ; Archaeological research ; Archaeology ; Bones ; Caves ; Chemical analysis ; Derivation ; Fragments ; Holocene ; Mapping ; Mineralogy ; Pleistocene ; Scanning electron microscopy ; Sediments ; Social Sciences ; Soils</subject><ispartof>Journal of archaeological method and theory, 2018-03, Vol.25 (1), p.45-68</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media New York 2017</rights><rights>Journal of Archaeological Method and Theory is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-2e327f1e587c0dc0c4ed941cc4dd6b094422e24f3dc8d321f994c8a0d98bebd53</citedby><cites>FETCH-LOGICAL-c338t-2e327f1e587c0dc0c4ed941cc4dd6b094422e24f3dc8d321f994c8a0d98bebd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26748446$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26748446$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,782,786,805,27931,27932,41495,42564,51326,58024,58257</link.rule.ids></links><search><creatorcontrib>Ward, I.</creatorcontrib><creatorcontrib>Merigot, K.</creatorcontrib><creatorcontrib>McInnes, B. I. A.</creatorcontrib><title>Application of Quantitative Mineralogical Analysis in Archaeological Micromorphology: a Case Study from Barrow Is., Western Australia</title><title>Journal of archaeological method and theory</title><addtitle>J Archaeol Method Theory</addtitle><description>This study assesses the use of the Tescan Integrated Mineral Analyser (TIMA) platform, which integrates scanning electron microscopy—energy dispersive spectroscopy (SEM-EDS) chemical analysis with mineral identification software, to quantitatively determine the mineralogical composition of sediments in archaeological research. Ten samples, spanning 50,000 years of sedimentation, were examined from archaeological excavation profiles in the Boodie Cave, Barrow Island, Western Australia. TIMA mineral abundance data show a gradual change from a polymineralogic quartz-rich assemblage from ∼50–12 ka to a more simple carbonate-dominate assemblage from the terminal Pleistocene. This trend is consistent with a decreasing contribution of reworked terrestrial siliciclastic sediments derived from the mainland and an increase in carbonate sediments of marine derivation, as the exposed coastal plain become submerged during post-glacial sea-level rise. SEM-EDS analysis has also provided empirical data on cultural materials, mainly bone and shell fragments that similarly reflect the increasing contribution of marine fauna into the Holocene sediments. Particularly useful is the ability of mineral mapping function of the TIMA outputs to help distinguish 16 sub-units representing sections of the main nine stratigraphic units, including at least three contiguous midden events. The SEM-EDS data indicate that the redeposited sediments were derived from the overlying midden unit, with layering reflecting differential settling of mineral phases. This study demonstrates that automated mineralogy studies using TIMA can clearly aid the identification of provenance and processes within archaeological sediments and soils.</description><subject>Anthropology</subject><subject>Archaeological research</subject><subject>Archaeology</subject><subject>Bones</subject><subject>Caves</subject><subject>Chemical analysis</subject><subject>Derivation</subject><subject>Fragments</subject><subject>Holocene</subject><subject>Mapping</subject><subject>Mineralogy</subject><subject>Pleistocene</subject><subject>Scanning electron microscopy</subject><subject>Sediments</subject><subject>Social Sciences</subject><subject>Soils</subject><issn>1072-5369</issn><issn>1573-7764</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UMtOGzEUHaEilQY-oAskS2yZ9PoRP9iFqC2RQKgqVZeWY3vA0TAe7JmifED_u44GKlas7uucc-89VfUZwxwDiC8Zg8S8BixqRSnU_KA6wgtBayE4-1ByEKReUK4-Vp9y3gIAJwBH1d9l37fBmiHEDsUG_RhNN4Sh1H88ugmdT6aN9wXQomVn2l0OGYUOLZN9MD6-jm6CTfExpv5h39pdIINWJnv0cxjdDjVlhi5NSvEZrfP8HP32efCpqIx5KPrBHFeHjWmzP3mJs-rXt693q6v6-vb7erW8ri2lcqiJp0Q02C-ksOAsWOadYtha5hzfgGKMEE9YQ52VjhLcKMWsNOCU3PiNW9BZdTbp9ik-jeUKvY1jKn9ljZWinFEpZEHhCVWeyjn5RvcpPJq00xj03m09ua2L23rvtuaFQyZOLtju3qc3yu-QTifSNg8x_d9CuGCSMU7_ATc3jgg</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Ward, I.</creator><creator>Merigot, K.</creator><creator>McInnes, B. I. A.</creator><general>Springer</general><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8BJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20180301</creationdate><title>Application of Quantitative Mineralogical Analysis in Archaeological Micromorphology: a Case Study from Barrow Is., Western Australia</title><author>Ward, I. ; Merigot, K. ; McInnes, B. I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-2e327f1e587c0dc0c4ed941cc4dd6b094422e24f3dc8d321f994c8a0d98bebd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anthropology</topic><topic>Archaeological research</topic><topic>Archaeology</topic><topic>Bones</topic><topic>Caves</topic><topic>Chemical analysis</topic><topic>Derivation</topic><topic>Fragments</topic><topic>Holocene</topic><topic>Mapping</topic><topic>Mineralogy</topic><topic>Pleistocene</topic><topic>Scanning electron microscopy</topic><topic>Sediments</topic><topic>Social Sciences</topic><topic>Soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ward, I.</creatorcontrib><creatorcontrib>Merigot, K.</creatorcontrib><creatorcontrib>McInnes, B. I. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of archaeological method and theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ward, I.</au><au>Merigot, K.</au><au>McInnes, B. I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Quantitative Mineralogical Analysis in Archaeological Micromorphology: a Case Study from Barrow Is., Western Australia</atitle><jtitle>Journal of archaeological method and theory</jtitle><stitle>J Archaeol Method Theory</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>25</volume><issue>1</issue><spage>45</spage><epage>68</epage><pages>45-68</pages><issn>1072-5369</issn><eissn>1573-7764</eissn><abstract>This study assesses the use of the Tescan Integrated Mineral Analyser (TIMA) platform, which integrates scanning electron microscopy—energy dispersive spectroscopy (SEM-EDS) chemical analysis with mineral identification software, to quantitatively determine the mineralogical composition of sediments in archaeological research. Ten samples, spanning 50,000 years of sedimentation, were examined from archaeological excavation profiles in the Boodie Cave, Barrow Island, Western Australia. TIMA mineral abundance data show a gradual change from a polymineralogic quartz-rich assemblage from ∼50–12 ka to a more simple carbonate-dominate assemblage from the terminal Pleistocene. This trend is consistent with a decreasing contribution of reworked terrestrial siliciclastic sediments derived from the mainland and an increase in carbonate sediments of marine derivation, as the exposed coastal plain become submerged during post-glacial sea-level rise. SEM-EDS analysis has also provided empirical data on cultural materials, mainly bone and shell fragments that similarly reflect the increasing contribution of marine fauna into the Holocene sediments. Particularly useful is the ability of mineral mapping function of the TIMA outputs to help distinguish 16 sub-units representing sections of the main nine stratigraphic units, including at least three contiguous midden events. The SEM-EDS data indicate that the redeposited sediments were derived from the overlying midden unit, with layering reflecting differential settling of mineral phases. This study demonstrates that automated mineralogy studies using TIMA can clearly aid the identification of provenance and processes within archaeological sediments and soils.</abstract><cop>New York</cop><pub>Springer</pub><doi>10.1007/s10816-017-9330-6</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-5369 |
ispartof | Journal of archaeological method and theory, 2018-03, Vol.25 (1), p.45-68 |
issn | 1072-5369 1573-7764 |
language | eng |
recordid | cdi_proquest_journals_1993643878 |
source | SpringerNature Journals; JSTOR Archive Collection A-Z Listing |
subjects | Anthropology Archaeological research Archaeology Bones Caves Chemical analysis Derivation Fragments Holocene Mapping Mineralogy Pleistocene Scanning electron microscopy Sediments Social Sciences Soils |
title | Application of Quantitative Mineralogical Analysis in Archaeological Micromorphology: a Case Study from Barrow Is., Western Australia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T02%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Quantitative%20Mineralogical%20Analysis%20in%20Archaeological%20Micromorphology:%20a%20Case%20Study%20from%20Barrow%20Is.,%20Western%20Australia&rft.jtitle=Journal%20of%20archaeological%20method%20and%20theory&rft.au=Ward,%20I.&rft.date=2018-03-01&rft.volume=25&rft.issue=1&rft.spage=45&rft.epage=68&rft.pages=45-68&rft.issn=1072-5369&rft.eissn=1573-7764&rft_id=info:doi/10.1007/s10816-017-9330-6&rft_dat=%3Cjstor_proqu%3E26748446%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993643878&rft_id=info:pmid/&rft_jstor_id=26748446&rfr_iscdi=true |