Statistical monitoring of multivariable dynamic processes with state-space models

Industrial continuous processes may have a large number of process variables and are usually operated for extended periods at fixed operating points under closed‐loop control, yielding process measurements that are autocorrelated, cross‐correlated, and collinear. A statistical process monitoring (SP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 1997-08, Vol.43 (8), p.2002-2020
Hauptverfasser: Negiz, Antoine, Çlinar, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2020
container_issue 8
container_start_page 2002
container_title AIChE journal
container_volume 43
creator Negiz, Antoine
Çlinar, Ali
description Industrial continuous processes may have a large number of process variables and are usually operated for extended periods at fixed operating points under closed‐loop control, yielding process measurements that are autocorrelated, cross‐correlated, and collinear. A statistical process monitoring (SPM) method based on multivariate statistics and system theory is introduced to monitor the variability of such processes. The statistical model that describes the in‐control variability is based on a canonical‐variate (CV) state‐space model that is an equivalent representation of a vector autoregressive moving‐average time‐series model. The CV state variables obtained from the state‐space model are linear combinations of the past process measurements that explain the variability of the future measurements the most. Because of this distinctive feature, the CV state variables are regarded as the principal dynamic directions A T2 statistic based on the CV state variables is used for developing an SPM procedure. Simple examples based on simulated data and an experimental application based on a high‐temperature short‐time milk pasteurization process illustrate advantages of the proposed SPM method.
doi_str_mv 10.1002/aic.690430810
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199357904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18775307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4130-62de02a27bc3f0b6c3a53211d938ac88468eb1da442cc5ea2e366e765d1013303</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqVw5B4hril-xHZyLBWUQgWC8jhaG8cBlzQpdkrpv8dVq4oTp9WuZmZHH0KnBPcIxvQCrO6JDCcMpwTvoQ7hiYx5hvk-6mCMSRwO5BAdeT8NG5Up7aDHSQut9a3VUEWzprZt42z9HjVlNFtUrf0GZyGvTFSsaphZHc1do433xkdL235EPthN7OegTbAXpvLH6KCEypuT7eyil-ur58FNPH4Yjgb9cawTwnAsaGEwBSpzzUqcC82AM0pIkbEUdJomIjU5KSBJqNbcADVMCCMFLwgmjGHWRWeb3NDoa2F8q6bNwtXhpSJZxrhck-iieCPSrvHemVLNnZ2BWymC1RqaCtDUDlrQn29DwQcipYNaW78zUZkJnq5j5Ua2tJVZ_Z-p-qPB3wfbQoG5-dk5wX0qIZnk6u1-qF7l0-VkOLlVd-wXx9aL8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199357904</pqid></control><display><type>article</type><title>Statistical monitoring of multivariable dynamic processes with state-space models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Negiz, Antoine ; Çlinar, Ali</creator><creatorcontrib>Negiz, Antoine ; Çlinar, Ali</creatorcontrib><description>Industrial continuous processes may have a large number of process variables and are usually operated for extended periods at fixed operating points under closed‐loop control, yielding process measurements that are autocorrelated, cross‐correlated, and collinear. A statistical process monitoring (SPM) method based on multivariate statistics and system theory is introduced to monitor the variability of such processes. The statistical model that describes the in‐control variability is based on a canonical‐variate (CV) state‐space model that is an equivalent representation of a vector autoregressive moving‐average time‐series model. The CV state variables obtained from the state‐space model are linear combinations of the past process measurements that explain the variability of the future measurements the most. Because of this distinctive feature, the CV state variables are regarded as the principal dynamic directions A T2 statistic based on the CV state variables is used for developing an SPM procedure. Simple examples based on simulated data and an experimental application based on a high‐temperature short‐time milk pasteurization process illustrate advantages of the proposed SPM method.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690430810</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization ; Applied sciences ; Biological and medical sciences ; Chemical engineering ; Exact sciences and technology ; Food engineering ; Food industries ; Fundamental and applied biological sciences. Psychology ; General aspects</subject><ispartof>AIChE journal, 1997-08, Vol.43 (8), p.2002-2020</ispartof><rights>Copyright © 1997 American Institute of Chemical Engineers</rights><rights>1997 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Aug 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4130-62de02a27bc3f0b6c3a53211d938ac88468eb1da442cc5ea2e366e765d1013303</citedby><cites>FETCH-LOGICAL-c4130-62de02a27bc3f0b6c3a53211d938ac88468eb1da442cc5ea2e366e765d1013303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690430810$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690430810$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2796584$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Negiz, Antoine</creatorcontrib><creatorcontrib>Çlinar, Ali</creatorcontrib><title>Statistical monitoring of multivariable dynamic processes with state-space models</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Industrial continuous processes may have a large number of process variables and are usually operated for extended periods at fixed operating points under closed‐loop control, yielding process measurements that are autocorrelated, cross‐correlated, and collinear. A statistical process monitoring (SPM) method based on multivariate statistics and system theory is introduced to monitor the variability of such processes. The statistical model that describes the in‐control variability is based on a canonical‐variate (CV) state‐space model that is an equivalent representation of a vector autoregressive moving‐average time‐series model. The CV state variables obtained from the state‐space model are linear combinations of the past process measurements that explain the variability of the future measurements the most. Because of this distinctive feature, the CV state variables are regarded as the principal dynamic directions A T2 statistic based on the CV state variables is used for developing an SPM procedure. Simple examples based on simulated data and an experimental application based on a high‐temperature short‐time milk pasteurization process illustrate advantages of the proposed SPM method.</description><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Food engineering</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtPwzAQhC0EEqVw5B4hril-xHZyLBWUQgWC8jhaG8cBlzQpdkrpv8dVq4oTp9WuZmZHH0KnBPcIxvQCrO6JDCcMpwTvoQ7hiYx5hvk-6mCMSRwO5BAdeT8NG5Up7aDHSQut9a3VUEWzprZt42z9HjVlNFtUrf0GZyGvTFSsaphZHc1do433xkdL235EPthN7OegTbAXpvLH6KCEypuT7eyil-ur58FNPH4Yjgb9cawTwnAsaGEwBSpzzUqcC82AM0pIkbEUdJomIjU5KSBJqNbcADVMCCMFLwgmjGHWRWeb3NDoa2F8q6bNwtXhpSJZxrhck-iieCPSrvHemVLNnZ2BWymC1RqaCtDUDlrQn29DwQcipYNaW78zUZkJnq5j5Ua2tJVZ_Z-p-qPB3wfbQoG5-dk5wX0qIZnk6u1-qF7l0-VkOLlVd-wXx9aL8w</recordid><startdate>199708</startdate><enddate>199708</enddate><creator>Negiz, Antoine</creator><creator>Çlinar, Ali</creator><general>American Institute of Chemical Engineers</general><general>Wiley Subscription Services</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>199708</creationdate><title>Statistical monitoring of multivariable dynamic processes with state-space models</title><author>Negiz, Antoine ; Çlinar, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4130-62de02a27bc3f0b6c3a53211d938ac88468eb1da442cc5ea2e366e765d1013303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Food engineering</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Negiz, Antoine</creatorcontrib><creatorcontrib>Çlinar, Ali</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Negiz, Antoine</au><au>Çlinar, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical monitoring of multivariable dynamic processes with state-space models</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>1997-08</date><risdate>1997</risdate><volume>43</volume><issue>8</issue><spage>2002</spage><epage>2020</epage><pages>2002-2020</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Industrial continuous processes may have a large number of process variables and are usually operated for extended periods at fixed operating points under closed‐loop control, yielding process measurements that are autocorrelated, cross‐correlated, and collinear. A statistical process monitoring (SPM) method based on multivariate statistics and system theory is introduced to monitor the variability of such processes. The statistical model that describes the in‐control variability is based on a canonical‐variate (CV) state‐space model that is an equivalent representation of a vector autoregressive moving‐average time‐series model. The CV state variables obtained from the state‐space model are linear combinations of the past process measurements that explain the variability of the future measurements the most. Because of this distinctive feature, the CV state variables are regarded as the principal dynamic directions A T2 statistic based on the CV state variables is used for developing an SPM procedure. Simple examples based on simulated data and an experimental application based on a high‐temperature short‐time milk pasteurization process illustrate advantages of the proposed SPM method.</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.690430810</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 1997-08, Vol.43 (8), p.2002-2020
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_199357904
source Wiley Online Library Journals Frontfile Complete
subjects Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization
Applied sciences
Biological and medical sciences
Chemical engineering
Exact sciences and technology
Food engineering
Food industries
Fundamental and applied biological sciences. Psychology
General aspects
title Statistical monitoring of multivariable dynamic processes with state-space models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20monitoring%20of%20multivariable%20dynamic%20processes%20with%20state-space%20models&rft.jtitle=AIChE%20journal&rft.au=Negiz,%20Antoine&rft.date=1997-08&rft.volume=43&rft.issue=8&rft.spage=2002&rft.epage=2020&rft.pages=2002-2020&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690430810&rft_dat=%3Cproquest_cross%3E18775307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199357904&rft_id=info:pmid/&rfr_iscdi=true