Fire weather and likelihood: characterizing climate space for fire occurrence and extent in Puerto Rico

Assessing the relationships between weather patterns and the likelihood of fire occurrence in the Caribbean has not been as central to climate change research as in temperate regions, due in part to the smaller extent of individual fires. However, the cumulative effect of small frequent fires can sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climatic change 2018, Vol.146 (1-2), p.117-131
Hauptverfasser: Van Beusekom, Ashley E., Gould, William A., Monmany, A. Carolina, Khalyani, Azad Henareh, Quiñones, Maya, Fain, Stephen J., Andrade-Núñez, Maria José, González, Grizelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue 1-2
container_start_page 117
container_title Climatic change
container_volume 146
creator Van Beusekom, Ashley E.
Gould, William A.
Monmany, A. Carolina
Khalyani, Azad Henareh
Quiñones, Maya
Fain, Stephen J.
Andrade-Núñez, Maria José
González, Grizelle
description Assessing the relationships between weather patterns and the likelihood of fire occurrence in the Caribbean has not been as central to climate change research as in temperate regions, due in part to the smaller extent of individual fires. However, the cumulative effect of small frequent fires can shape large landscapes, and fire-prone ecosystems are abundant in the tropics. Climate change has the potential to greatly expand fire-prone areas to moist and wet tropical forests and grasslands that have been traditionally less fire-prone, and to extend and create more temporal variability in fire seasons. We built a machine learning random forest classifier to analyze the relationship between climatic, socio-economic, and fire history data with fire occurrence and extent for the years 2003–2011 in Puerto Rico, nearly 35,000 fires. Using classifiers based on climate measurements alone, we found that the climate space is a reliable associate, if not a predictor, of fire occurrence and extent in this environment. We found a strong relationship between occurrence and a change from average weather conditions, and between extent and severity of weather conditions. The probability that the random forest classifiers will rank a positive example higher than a negative example is 0.8–0.89 in the classifiers for deciding if a fire occurs, and 0.64–0.69 in the classifiers for deciding if the fire is greater than 5 ha. Future climate projections of extreme seasons indicate increased potential for fire occurrence with larger extents.
doi_str_mv 10.1007/s10584-017-2045-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1993571102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993571102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-6164199e680605e7dbd60d63e7be8ba8f818c3dbd4e5f7b6a04218457986d91c3</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7-Ad4CnquTNk1Sb7L4BQuK6Dmk6XQ3a23WpMWPv96U9eDF0wyP937DPEJOGZwzAHkRGZSKZ8BklgMvM7FHZqyURca4gn0yAybKDACqQ3IU42baZC5mZHXjAtIPNMMaAzV9Qzv3ip1be99cUrs2wdgBg_t2_Yrazr2ZAWncGou09YG2U9pbO4aAfdImAH4O2A_U9fRxxDB4-uSsPyYHrekinvzOOXm5uX5e3GXLh9v7xdUys4XgQyaY4KyqUCgQUKJs6kZAIwqUNaraqFYxZYukcixbWQsDPGeKl7JSoqmYLebkbMfdBv8-Yhz0xo-hTyd14halZAzy5GI7lw0-xoCt3ob0WvjSDPTUp971qVOfeupTi5TJd5mYvP0Kwx_yv6Ef5c14Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993571102</pqid></control><display><type>article</type><title>Fire weather and likelihood: characterizing climate space for fire occurrence and extent in Puerto Rico</title><source>Springer Nature - Complete Springer Journals</source><creator>Van Beusekom, Ashley E. ; Gould, William A. ; Monmany, A. Carolina ; Khalyani, Azad Henareh ; Quiñones, Maya ; Fain, Stephen J. ; Andrade-Núñez, Maria José ; González, Grizelle</creator><creatorcontrib>Van Beusekom, Ashley E. ; Gould, William A. ; Monmany, A. Carolina ; Khalyani, Azad Henareh ; Quiñones, Maya ; Fain, Stephen J. ; Andrade-Núñez, Maria José ; González, Grizelle</creatorcontrib><description>Assessing the relationships between weather patterns and the likelihood of fire occurrence in the Caribbean has not been as central to climate change research as in temperate regions, due in part to the smaller extent of individual fires. However, the cumulative effect of small frequent fires can shape large landscapes, and fire-prone ecosystems are abundant in the tropics. Climate change has the potential to greatly expand fire-prone areas to moist and wet tropical forests and grasslands that have been traditionally less fire-prone, and to extend and create more temporal variability in fire seasons. We built a machine learning random forest classifier to analyze the relationship between climatic, socio-economic, and fire history data with fire occurrence and extent for the years 2003–2011 in Puerto Rico, nearly 35,000 fires. Using classifiers based on climate measurements alone, we found that the climate space is a reliable associate, if not a predictor, of fire occurrence and extent in this environment. We found a strong relationship between occurrence and a change from average weather conditions, and between extent and severity of weather conditions. The probability that the random forest classifiers will rank a positive example higher than a negative example is 0.8–0.89 in the classifiers for deciding if a fire occurs, and 0.64–0.69 in the classifiers for deciding if the fire is greater than 5 ha. Future climate projections of extreme seasons indicate increased potential for fire occurrence with larger extents.</description><identifier>ISSN: 0165-0009</identifier><identifier>EISSN: 1573-1480</identifier><identifier>DOI: 10.1007/s10584-017-2045-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmospheric Sciences ; Classifiers ; Climate ; Climate change ; Climate change research ; Climate Change/Climate Change Impacts ; Earth and Environmental Science ; Earth Sciences ; Economic analysis ; Ecosystems ; Fire weather ; Fires ; Forests ; Future climates ; Grasslands ; Landscape ; Learning algorithms ; Machine learning ; Probability theory ; Temporal variability ; Temporal variations ; Tropical climate ; Tropical environments ; Tropical forests ; Weather ; Weather conditions ; Weather patterns</subject><ispartof>Climatic change, 2018, Vol.146 (1-2), p.117-131</ispartof><rights>Springer Science+Business Media Dordrecht (outside the USA) 2017</rights><rights>Climatic Change is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-6164199e680605e7dbd60d63e7be8ba8f818c3dbd4e5f7b6a04218457986d91c3</citedby><cites>FETCH-LOGICAL-c364t-6164199e680605e7dbd60d63e7be8ba8f818c3dbd4e5f7b6a04218457986d91c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10584-017-2045-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10584-017-2045-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Van Beusekom, Ashley E.</creatorcontrib><creatorcontrib>Gould, William A.</creatorcontrib><creatorcontrib>Monmany, A. Carolina</creatorcontrib><creatorcontrib>Khalyani, Azad Henareh</creatorcontrib><creatorcontrib>Quiñones, Maya</creatorcontrib><creatorcontrib>Fain, Stephen J.</creatorcontrib><creatorcontrib>Andrade-Núñez, Maria José</creatorcontrib><creatorcontrib>González, Grizelle</creatorcontrib><title>Fire weather and likelihood: characterizing climate space for fire occurrence and extent in Puerto Rico</title><title>Climatic change</title><addtitle>Climatic Change</addtitle><description>Assessing the relationships between weather patterns and the likelihood of fire occurrence in the Caribbean has not been as central to climate change research as in temperate regions, due in part to the smaller extent of individual fires. However, the cumulative effect of small frequent fires can shape large landscapes, and fire-prone ecosystems are abundant in the tropics. Climate change has the potential to greatly expand fire-prone areas to moist and wet tropical forests and grasslands that have been traditionally less fire-prone, and to extend and create more temporal variability in fire seasons. We built a machine learning random forest classifier to analyze the relationship between climatic, socio-economic, and fire history data with fire occurrence and extent for the years 2003–2011 in Puerto Rico, nearly 35,000 fires. Using classifiers based on climate measurements alone, we found that the climate space is a reliable associate, if not a predictor, of fire occurrence and extent in this environment. We found a strong relationship between occurrence and a change from average weather conditions, and between extent and severity of weather conditions. The probability that the random forest classifiers will rank a positive example higher than a negative example is 0.8–0.89 in the classifiers for deciding if a fire occurs, and 0.64–0.69 in the classifiers for deciding if the fire is greater than 5 ha. Future climate projections of extreme seasons indicate increased potential for fire occurrence with larger extents.</description><subject>Atmospheric Sciences</subject><subject>Classifiers</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate change research</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Economic analysis</subject><subject>Ecosystems</subject><subject>Fire weather</subject><subject>Fires</subject><subject>Forests</subject><subject>Future climates</subject><subject>Grasslands</subject><subject>Landscape</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Probability theory</subject><subject>Temporal variability</subject><subject>Temporal variations</subject><subject>Tropical climate</subject><subject>Tropical environments</subject><subject>Tropical forests</subject><subject>Weather</subject><subject>Weather conditions</subject><subject>Weather patterns</subject><issn>0165-0009</issn><issn>1573-1480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1LxDAQxYMouK7-Ad4CnquTNk1Sb7L4BQuK6Dmk6XQ3a23WpMWPv96U9eDF0wyP937DPEJOGZwzAHkRGZSKZ8BklgMvM7FHZqyURca4gn0yAybKDACqQ3IU42baZC5mZHXjAtIPNMMaAzV9Qzv3ip1be99cUrs2wdgBg_t2_Yrazr2ZAWncGou09YG2U9pbO4aAfdImAH4O2A_U9fRxxDB4-uSsPyYHrekinvzOOXm5uX5e3GXLh9v7xdUys4XgQyaY4KyqUCgQUKJs6kZAIwqUNaraqFYxZYukcixbWQsDPGeKl7JSoqmYLebkbMfdBv8-Yhz0xo-hTyd14halZAzy5GI7lw0-xoCt3ob0WvjSDPTUp971qVOfeupTi5TJd5mYvP0Kwx_yv6Ef5c14Yw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Van Beusekom, Ashley E.</creator><creator>Gould, William A.</creator><creator>Monmany, A. Carolina</creator><creator>Khalyani, Azad Henareh</creator><creator>Quiñones, Maya</creator><creator>Fain, Stephen J.</creator><creator>Andrade-Núñez, Maria José</creator><creator>González, Grizelle</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KL.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>SOI</scope></search><sort><creationdate>2018</creationdate><title>Fire weather and likelihood: characterizing climate space for fire occurrence and extent in Puerto Rico</title><author>Van Beusekom, Ashley E. ; Gould, William A. ; Monmany, A. Carolina ; Khalyani, Azad Henareh ; Quiñones, Maya ; Fain, Stephen J. ; Andrade-Núñez, Maria José ; González, Grizelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-6164199e680605e7dbd60d63e7be8ba8f818c3dbd4e5f7b6a04218457986d91c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmospheric Sciences</topic><topic>Classifiers</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate change research</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Economic analysis</topic><topic>Ecosystems</topic><topic>Fire weather</topic><topic>Fires</topic><topic>Forests</topic><topic>Future climates</topic><topic>Grasslands</topic><topic>Landscape</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Probability theory</topic><topic>Temporal variability</topic><topic>Temporal variations</topic><topic>Tropical climate</topic><topic>Tropical environments</topic><topic>Tropical forests</topic><topic>Weather</topic><topic>Weather conditions</topic><topic>Weather patterns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Beusekom, Ashley E.</creatorcontrib><creatorcontrib>Gould, William A.</creatorcontrib><creatorcontrib>Monmany, A. Carolina</creatorcontrib><creatorcontrib>Khalyani, Azad Henareh</creatorcontrib><creatorcontrib>Quiñones, Maya</creatorcontrib><creatorcontrib>Fain, Stephen J.</creatorcontrib><creatorcontrib>Andrade-Núñez, Maria José</creatorcontrib><creatorcontrib>González, Grizelle</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Environment Abstracts</collection><jtitle>Climatic change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Beusekom, Ashley E.</au><au>Gould, William A.</au><au>Monmany, A. Carolina</au><au>Khalyani, Azad Henareh</au><au>Quiñones, Maya</au><au>Fain, Stephen J.</au><au>Andrade-Núñez, Maria José</au><au>González, Grizelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fire weather and likelihood: characterizing climate space for fire occurrence and extent in Puerto Rico</atitle><jtitle>Climatic change</jtitle><stitle>Climatic Change</stitle><date>2018</date><risdate>2018</risdate><volume>146</volume><issue>1-2</issue><spage>117</spage><epage>131</epage><pages>117-131</pages><issn>0165-0009</issn><eissn>1573-1480</eissn><abstract>Assessing the relationships between weather patterns and the likelihood of fire occurrence in the Caribbean has not been as central to climate change research as in temperate regions, due in part to the smaller extent of individual fires. However, the cumulative effect of small frequent fires can shape large landscapes, and fire-prone ecosystems are abundant in the tropics. Climate change has the potential to greatly expand fire-prone areas to moist and wet tropical forests and grasslands that have been traditionally less fire-prone, and to extend and create more temporal variability in fire seasons. We built a machine learning random forest classifier to analyze the relationship between climatic, socio-economic, and fire history data with fire occurrence and extent for the years 2003–2011 in Puerto Rico, nearly 35,000 fires. Using classifiers based on climate measurements alone, we found that the climate space is a reliable associate, if not a predictor, of fire occurrence and extent in this environment. We found a strong relationship between occurrence and a change from average weather conditions, and between extent and severity of weather conditions. The probability that the random forest classifiers will rank a positive example higher than a negative example is 0.8–0.89 in the classifiers for deciding if a fire occurs, and 0.64–0.69 in the classifiers for deciding if the fire is greater than 5 ha. Future climate projections of extreme seasons indicate increased potential for fire occurrence with larger extents.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10584-017-2045-6</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-0009
ispartof Climatic change, 2018, Vol.146 (1-2), p.117-131
issn 0165-0009
1573-1480
language eng
recordid cdi_proquest_journals_1993571102
source Springer Nature - Complete Springer Journals
subjects Atmospheric Sciences
Classifiers
Climate
Climate change
Climate change research
Climate Change/Climate Change Impacts
Earth and Environmental Science
Earth Sciences
Economic analysis
Ecosystems
Fire weather
Fires
Forests
Future climates
Grasslands
Landscape
Learning algorithms
Machine learning
Probability theory
Temporal variability
Temporal variations
Tropical climate
Tropical environments
Tropical forests
Weather
Weather conditions
Weather patterns
title Fire weather and likelihood: characterizing climate space for fire occurrence and extent in Puerto Rico
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fire%20weather%20and%20likelihood:%20characterizing%20climate%20space%20for%20fire%20occurrence%20and%20extent%20in%20Puerto%20Rico&rft.jtitle=Climatic%20change&rft.au=Van%20Beusekom,%20Ashley%20E.&rft.date=2018&rft.volume=146&rft.issue=1-2&rft.spage=117&rft.epage=131&rft.pages=117-131&rft.issn=0165-0009&rft.eissn=1573-1480&rft_id=info:doi/10.1007/s10584-017-2045-6&rft_dat=%3Cproquest_cross%3E1993571102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993571102&rft_id=info:pmid/&rfr_iscdi=true