Role of diffusion in biocatalytic polytransesterification
The solvent‐free enzyme‐catalyzed polytransesterification of divinyl adipate and 1,4‐butanediol yielding high molecular‐weight polyesters was studied. This heterogeneous system is characterized by initial exothermicity, a 104‐fold increase in viscosity, and complex kinetics involving parallel reacti...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2001-02, Vol.47 (2), p.489-499 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 499 |
---|---|
container_issue | 2 |
container_start_page | 489 |
container_title | AIChE journal |
container_volume | 47 |
creator | Kline, Billie J. Lele, Smita S. Beckman, Eric J. Russell, Alan J. |
description | The solvent‐free enzyme‐catalyzed polytransesterification of divinyl adipate and 1,4‐butanediol yielding high molecular‐weight polyesters was studied. This heterogeneous system is characterized by initial exothermicity, a 104‐fold increase in viscosity, and complex kinetics involving parallel reactions and variable reaction volumes. Herein a semitheoretical analysis of solvent‐free polytransesterification was developed to further refine understanding of the role of diffusion, especially how molecular weight and poly‐dispersity evolve during solvent‐free biocatalytic polytransesterification. The evolution of polydispersity observed during the polymerization was attributed to diffusion, and there‐fore internal diffusion limitations were assessed experimentals. The analysis denzon‐strated that the system is initially under weak diffusional control, which is strengthened by the initial exothermicity of the reaction. At molecular weights over 5,000 Da, the system experienced severe mass‐transfer resistance due to chain entanglements. Reduced erizyme specificity with increasing chain length, enzyme deactivation, and vinyl hydrolysis dampen the diffusional constraints toward the end of the polymerization such that the system could return to slight diffusional or kinetic control on exceeding molecular weights of 20,000 Da. |
doi_str_mv | 10.1002/aic.690470225 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199356889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69090938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3765-f8da3c624653c46380d89760496be7f113de3122364e101cba84d64eaa4562053</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKtL94Oup-b9WJaitTAoSK3LkGYSSB0nNWnR_nsjLcWVq5vkfvfk3APANYIjBCG-M8GOuIJUQIzZCRggRkXNFGSnYAAhRHV5QOfgIudVuWEh8QCol9i5KvqqDd5vc4h9FfpqGaI1G9PtNsFW61hqMn12eeNS8KG0CncJzrzpsrs61CF4fbifTx7r5nk6m4yb2hLBWe1la4jlmHJGLOVEwlYqwSFVfOmER4i0jiCMCacOQWSXRtK2nI2hjGPIyBDc7HXXKX5uiwe9itvUly81UoowLqUqUL2HbIo5J-f1OoUPk3YaQf0bji7h6GM4hb89iJpsTefLejbk45AqTigslNhTX6Fzu_8l9Xg2-at_8BNKZt_HSZPeNRdEMP32NNWLBYHTppF6Tn4AEF-B4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199356889</pqid></control><display><type>article</type><title>Role of diffusion in biocatalytic polytransesterification</title><source>Access via Wiley Online Library</source><creator>Kline, Billie J. ; Lele, Smita S. ; Beckman, Eric J. ; Russell, Alan J.</creator><creatorcontrib>Kline, Billie J. ; Lele, Smita S. ; Beckman, Eric J. ; Russell, Alan J.</creatorcontrib><description>The solvent‐free enzyme‐catalyzed polytransesterification of divinyl adipate and 1,4‐butanediol yielding high molecular‐weight polyesters was studied. This heterogeneous system is characterized by initial exothermicity, a 104‐fold increase in viscosity, and complex kinetics involving parallel reactions and variable reaction volumes. Herein a semitheoretical analysis of solvent‐free polytransesterification was developed to further refine understanding of the role of diffusion, especially how molecular weight and poly‐dispersity evolve during solvent‐free biocatalytic polytransesterification. The evolution of polydispersity observed during the polymerization was attributed to diffusion, and there‐fore internal diffusion limitations were assessed experimentals. The analysis denzon‐strated that the system is initially under weak diffusional control, which is strengthened by the initial exothermicity of the reaction. At molecular weights over 5,000 Da, the system experienced severe mass‐transfer resistance due to chain entanglements. Reduced erizyme specificity with increasing chain length, enzyme deactivation, and vinyl hydrolysis dampen the diffusional constraints toward the end of the polymerization such that the system could return to slight diffusional or kinetic control on exceeding molecular weights of 20,000 Da.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690470225</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Bioconversions. Hemisynthesis ; Biological and medical sciences ; Biotechnology ; Fundamental and applied biological sciences. Psychology ; Methods. Procedures. Technologies</subject><ispartof>AIChE journal, 2001-02, Vol.47 (2), p.489-499</ispartof><rights>Copyright © 2001 American Institute of Chemical Engineers (AIChE)</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Feb 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3765-f8da3c624653c46380d89760496be7f113de3122364e101cba84d64eaa4562053</citedby><cites>FETCH-LOGICAL-c3765-f8da3c624653c46380d89760496be7f113de3122364e101cba84d64eaa4562053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690470225$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690470225$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=910140$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kline, Billie J.</creatorcontrib><creatorcontrib>Lele, Smita S.</creatorcontrib><creatorcontrib>Beckman, Eric J.</creatorcontrib><creatorcontrib>Russell, Alan J.</creatorcontrib><title>Role of diffusion in biocatalytic polytransesterification</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>The solvent‐free enzyme‐catalyzed polytransesterification of divinyl adipate and 1,4‐butanediol yielding high molecular‐weight polyesters was studied. This heterogeneous system is characterized by initial exothermicity, a 104‐fold increase in viscosity, and complex kinetics involving parallel reactions and variable reaction volumes. Herein a semitheoretical analysis of solvent‐free polytransesterification was developed to further refine understanding of the role of diffusion, especially how molecular weight and poly‐dispersity evolve during solvent‐free biocatalytic polytransesterification. The evolution of polydispersity observed during the polymerization was attributed to diffusion, and there‐fore internal diffusion limitations were assessed experimentals. The analysis denzon‐strated that the system is initially under weak diffusional control, which is strengthened by the initial exothermicity of the reaction. At molecular weights over 5,000 Da, the system experienced severe mass‐transfer resistance due to chain entanglements. Reduced erizyme specificity with increasing chain length, enzyme deactivation, and vinyl hydrolysis dampen the diffusional constraints toward the end of the polymerization such that the system could return to slight diffusional or kinetic control on exceeding molecular weights of 20,000 Da.</description><subject>Bioconversions. Hemisynthesis</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Methods. Procedures. Technologies</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEUhYMoWKtL94Oup-b9WJaitTAoSK3LkGYSSB0nNWnR_nsjLcWVq5vkfvfk3APANYIjBCG-M8GOuIJUQIzZCRggRkXNFGSnYAAhRHV5QOfgIudVuWEh8QCol9i5KvqqDd5vc4h9FfpqGaI1G9PtNsFW61hqMn12eeNS8KG0CncJzrzpsrs61CF4fbifTx7r5nk6m4yb2hLBWe1la4jlmHJGLOVEwlYqwSFVfOmER4i0jiCMCacOQWSXRtK2nI2hjGPIyBDc7HXXKX5uiwe9itvUly81UoowLqUqUL2HbIo5J-f1OoUPk3YaQf0bji7h6GM4hb89iJpsTefLejbk45AqTigslNhTX6Fzu_8l9Xg2-at_8BNKZt_HSZPeNRdEMP32NNWLBYHTppF6Tn4AEF-B4A</recordid><startdate>200102</startdate><enddate>200102</enddate><creator>Kline, Billie J.</creator><creator>Lele, Smita S.</creator><creator>Beckman, Eric J.</creator><creator>Russell, Alan J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>200102</creationdate><title>Role of diffusion in biocatalytic polytransesterification</title><author>Kline, Billie J. ; Lele, Smita S. ; Beckman, Eric J. ; Russell, Alan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3765-f8da3c624653c46380d89760496be7f113de3122364e101cba84d64eaa4562053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Bioconversions. Hemisynthesis</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Methods. Procedures. Technologies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kline, Billie J.</creatorcontrib><creatorcontrib>Lele, Smita S.</creatorcontrib><creatorcontrib>Beckman, Eric J.</creatorcontrib><creatorcontrib>Russell, Alan J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kline, Billie J.</au><au>Lele, Smita S.</au><au>Beckman, Eric J.</au><au>Russell, Alan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of diffusion in biocatalytic polytransesterification</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2001-02</date><risdate>2001</risdate><volume>47</volume><issue>2</issue><spage>489</spage><epage>499</epage><pages>489-499</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>The solvent‐free enzyme‐catalyzed polytransesterification of divinyl adipate and 1,4‐butanediol yielding high molecular‐weight polyesters was studied. This heterogeneous system is characterized by initial exothermicity, a 104‐fold increase in viscosity, and complex kinetics involving parallel reactions and variable reaction volumes. Herein a semitheoretical analysis of solvent‐free polytransesterification was developed to further refine understanding of the role of diffusion, especially how molecular weight and poly‐dispersity evolve during solvent‐free biocatalytic polytransesterification. The evolution of polydispersity observed during the polymerization was attributed to diffusion, and there‐fore internal diffusion limitations were assessed experimentals. The analysis denzon‐strated that the system is initially under weak diffusional control, which is strengthened by the initial exothermicity of the reaction. At molecular weights over 5,000 Da, the system experienced severe mass‐transfer resistance due to chain entanglements. Reduced erizyme specificity with increasing chain length, enzyme deactivation, and vinyl hydrolysis dampen the diffusional constraints toward the end of the polymerization such that the system could return to slight diffusional or kinetic control on exceeding molecular weights of 20,000 Da.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.690470225</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2001-02, Vol.47 (2), p.489-499 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_199356889 |
source | Access via Wiley Online Library |
subjects | Bioconversions. Hemisynthesis Biological and medical sciences Biotechnology Fundamental and applied biological sciences. Psychology Methods. Procedures. Technologies |
title | Role of diffusion in biocatalytic polytransesterification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20diffusion%20in%20biocatalytic%20polytransesterification&rft.jtitle=AIChE%20journal&rft.au=Kline,%20Billie%20J.&rft.date=2001-02&rft.volume=47&rft.issue=2&rft.spage=489&rft.epage=499&rft.pages=489-499&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690470225&rft_dat=%3Cproquest_cross%3E69090938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199356889&rft_id=info:pmid/&rfr_iscdi=true |