Inertia-driven enhancement of mixing efficiency in microfluidic cross-junctions: a combined Eulerian/Lagrangian approach

Mixing of a diffusing species entrained in a three-dimensional microfluidic flow-focusing cross-junction is numerically investigated at low Reynolds numbers, 1 ≤ R e ≤ 150 , for a value of the Schmidt number representative of a small solute molecule in water, S c = 10 3 . Accurate three-dimensional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microfluidics and nanofluidics 2018-02, Vol.22 (2), p.1-15, Article 20
Hauptverfasser: Borgogna, Alessia, Murmura, Maria Anna, Annesini, Maria Cristina, Giona, Massimiliano, Cerbelli, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 2
container_start_page 1
container_title Microfluidics and nanofluidics
container_volume 22
creator Borgogna, Alessia
Murmura, Maria Anna
Annesini, Maria Cristina
Giona, Massimiliano
Cerbelli, Stefano
description Mixing of a diffusing species entrained in a three-dimensional microfluidic flow-focusing cross-junction is numerically investigated at low Reynolds numbers, 1 ≤ R e ≤ 150 , for a value of the Schmidt number representative of a small solute molecule in water, S c = 10 3 . Accurate three-dimensional simulations of the steady-state incompressible Navier–Stokes equations confirm recent results reported in the literature highlighting the occurrence of different qualitative structures of the flow geometry, whose range of existence depends on Re and on the ratio, R , between the volumetric flowrates of the impinging currents. At low values of R and increasing Re , the flux tube enclosing the solute-rich stream undergoes a topological transition, from the classical flow-focused structure to a multi-branched shape. We here show that this transition causes a nonmonotonic behavior of mixing efficiency with Re at constant flow ratio. The increase in efficiency is the consequence of a progressive compression of the cross-sectional diffusional lengthscale, which provides the mechanism sustaining the transversal Fickian flux even when the Peclet number, P e = R e S c , characterizing mass transport, becomes higher due to the increase in Re . The quantitative assessment of mixing efficiency at the considerably high values of the Peclet number considered ( 10 3 ≤ P e ≤ 1.5 × 10 5 ) is here made possible by a novel method of reconstruction of steady-state cross-sectional concentration maps from velocity-weighted ensemble statistics of noisy trajectories, which does away with the severe numerical diffusion shortcomings associated with classical Eulerian approaches to mass transport in complex 3d flows.
doi_str_mv 10.1007/s10404-018-2041-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1993492513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993492513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-124d9dc25f41a6c2d80c2d9ea86365f7d491097dcc76441aeddcb534e8aa146c3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHPsZls9iPepFQtFLzoOaRJdpvSzdZkV9p_b-qKePEy8xjeB_MQugV6D5SWswiUU04oVIRRDkScoQkUkBEuBD3_xRW7RFcxbinlJQM6QYelt6F3ipjgPq3H1m-U17a1vsddjVt3cL7Btq6ddtbrI3Y-HXXo6t3gjNM4wRjJdvC6d52PD1hh3bVr563Bi2Fng1N-tlJNUL5JEKv9PnRKb67RRa120d787Cl6f1q8zV_I6vV5OX9cEZ1B0RNg3AijWV5zUIVmpqJpCKuqIivyujRcABWl0boseKJYY_Q6z7itlAJe6GyK7kbfFPsx2NjLbTcEnyIlCJFxwXLIEgtG1vc7wdZyH1yrwlEClaeC5ViwTAXLU8FSJA0bNTFxfWPDH-d_RV8CGIAm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993492513</pqid></control><display><type>article</type><title>Inertia-driven enhancement of mixing efficiency in microfluidic cross-junctions: a combined Eulerian/Lagrangian approach</title><source>SpringerLink Journals</source><creator>Borgogna, Alessia ; Murmura, Maria Anna ; Annesini, Maria Cristina ; Giona, Massimiliano ; Cerbelli, Stefano</creator><creatorcontrib>Borgogna, Alessia ; Murmura, Maria Anna ; Annesini, Maria Cristina ; Giona, Massimiliano ; Cerbelli, Stefano</creatorcontrib><description>Mixing of a diffusing species entrained in a three-dimensional microfluidic flow-focusing cross-junction is numerically investigated at low Reynolds numbers, 1 ≤ R e ≤ 150 , for a value of the Schmidt number representative of a small solute molecule in water, S c = 10 3 . Accurate three-dimensional simulations of the steady-state incompressible Navier–Stokes equations confirm recent results reported in the literature highlighting the occurrence of different qualitative structures of the flow geometry, whose range of existence depends on Re and on the ratio, R , between the volumetric flowrates of the impinging currents. At low values of R and increasing Re , the flux tube enclosing the solute-rich stream undergoes a topological transition, from the classical flow-focused structure to a multi-branched shape. We here show that this transition causes a nonmonotonic behavior of mixing efficiency with Re at constant flow ratio. The increase in efficiency is the consequence of a progressive compression of the cross-sectional diffusional lengthscale, which provides the mechanism sustaining the transversal Fickian flux even when the Peclet number, P e = R e S c , characterizing mass transport, becomes higher due to the increase in Re . The quantitative assessment of mixing efficiency at the considerably high values of the Peclet number considered ( 10 3 ≤ P e ≤ 1.5 × 10 5 ) is here made possible by a novel method of reconstruction of steady-state cross-sectional concentration maps from velocity-weighted ensemble statistics of noisy trajectories, which does away with the severe numerical diffusion shortcomings associated with classical Eulerian approaches to mass transport in complex 3d flows.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-018-2041-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Biomedical Engineering and Bioengineering ; Compression ; Computational fluid dynamics ; Computer simulation ; Cross-sections ; Dye dispersion ; Efficiency ; Engineering ; Engineering Fluid Dynamics ; Flow geometry ; Flow rates ; Inertia ; Mass transport ; Mathematical models ; Nanotechnology and Microengineering ; Navier-Stokes equations ; Peclet number ; Research Paper ; Schmidt number ; Solutes ; Species diffusion ; Statistical methods ; Steady state ; Three dimensional flow ; Transport</subject><ispartof>Microfluidics and nanofluidics, 2018-02, Vol.22 (2), p.1-15, Article 20</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Microfluidics and Nanofluidics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-124d9dc25f41a6c2d80c2d9ea86365f7d491097dcc76441aeddcb534e8aa146c3</citedby><cites>FETCH-LOGICAL-c316t-124d9dc25f41a6c2d80c2d9ea86365f7d491097dcc76441aeddcb534e8aa146c3</cites><orcidid>0000-0003-3906-6595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-018-2041-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-018-2041-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Borgogna, Alessia</creatorcontrib><creatorcontrib>Murmura, Maria Anna</creatorcontrib><creatorcontrib>Annesini, Maria Cristina</creatorcontrib><creatorcontrib>Giona, Massimiliano</creatorcontrib><creatorcontrib>Cerbelli, Stefano</creatorcontrib><title>Inertia-driven enhancement of mixing efficiency in microfluidic cross-junctions: a combined Eulerian/Lagrangian approach</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>Mixing of a diffusing species entrained in a three-dimensional microfluidic flow-focusing cross-junction is numerically investigated at low Reynolds numbers, 1 ≤ R e ≤ 150 , for a value of the Schmidt number representative of a small solute molecule in water, S c = 10 3 . Accurate three-dimensional simulations of the steady-state incompressible Navier–Stokes equations confirm recent results reported in the literature highlighting the occurrence of different qualitative structures of the flow geometry, whose range of existence depends on Re and on the ratio, R , between the volumetric flowrates of the impinging currents. At low values of R and increasing Re , the flux tube enclosing the solute-rich stream undergoes a topological transition, from the classical flow-focused structure to a multi-branched shape. We here show that this transition causes a nonmonotonic behavior of mixing efficiency with Re at constant flow ratio. The increase in efficiency is the consequence of a progressive compression of the cross-sectional diffusional lengthscale, which provides the mechanism sustaining the transversal Fickian flux even when the Peclet number, P e = R e S c , characterizing mass transport, becomes higher due to the increase in Re . The quantitative assessment of mixing efficiency at the considerably high values of the Peclet number considered ( 10 3 ≤ P e ≤ 1.5 × 10 5 ) is here made possible by a novel method of reconstruction of steady-state cross-sectional concentration maps from velocity-weighted ensemble statistics of noisy trajectories, which does away with the severe numerical diffusion shortcomings associated with classical Eulerian approaches to mass transport in complex 3d flows.</description><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Compression</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cross-sections</subject><subject>Dye dispersion</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Flow geometry</subject><subject>Flow rates</subject><subject>Inertia</subject><subject>Mass transport</subject><subject>Mathematical models</subject><subject>Nanotechnology and Microengineering</subject><subject>Navier-Stokes equations</subject><subject>Peclet number</subject><subject>Research Paper</subject><subject>Schmidt number</subject><subject>Solutes</subject><subject>Species diffusion</subject><subject>Statistical methods</subject><subject>Steady state</subject><subject>Three dimensional flow</subject><subject>Transport</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UE1LAzEQDaJgrf4AbwHPsZls9iPepFQtFLzoOaRJdpvSzdZkV9p_b-qKePEy8xjeB_MQugV6D5SWswiUU04oVIRRDkScoQkUkBEuBD3_xRW7RFcxbinlJQM6QYelt6F3ipjgPq3H1m-U17a1vsddjVt3cL7Btq6ddtbrI3Y-HXXo6t3gjNM4wRjJdvC6d52PD1hh3bVr563Bi2Fng1N-tlJNUL5JEKv9PnRKb67RRa120d787Cl6f1q8zV_I6vV5OX9cEZ1B0RNg3AijWV5zUIVmpqJpCKuqIivyujRcABWl0boseKJYY_Q6z7itlAJe6GyK7kbfFPsx2NjLbTcEnyIlCJFxwXLIEgtG1vc7wdZyH1yrwlEClaeC5ViwTAXLU8FSJA0bNTFxfWPDH-d_RV8CGIAm</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Borgogna, Alessia</creator><creator>Murmura, Maria Anna</creator><creator>Annesini, Maria Cristina</creator><creator>Giona, Massimiliano</creator><creator>Cerbelli, Stefano</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3906-6595</orcidid></search><sort><creationdate>20180201</creationdate><title>Inertia-driven enhancement of mixing efficiency in microfluidic cross-junctions: a combined Eulerian/Lagrangian approach</title><author>Borgogna, Alessia ; Murmura, Maria Anna ; Annesini, Maria Cristina ; Giona, Massimiliano ; Cerbelli, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-124d9dc25f41a6c2d80c2d9ea86365f7d491097dcc76441aeddcb534e8aa146c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Compression</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cross-sections</topic><topic>Dye dispersion</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Flow geometry</topic><topic>Flow rates</topic><topic>Inertia</topic><topic>Mass transport</topic><topic>Mathematical models</topic><topic>Nanotechnology and Microengineering</topic><topic>Navier-Stokes equations</topic><topic>Peclet number</topic><topic>Research Paper</topic><topic>Schmidt number</topic><topic>Solutes</topic><topic>Species diffusion</topic><topic>Statistical methods</topic><topic>Steady state</topic><topic>Three dimensional flow</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borgogna, Alessia</creatorcontrib><creatorcontrib>Murmura, Maria Anna</creatorcontrib><creatorcontrib>Annesini, Maria Cristina</creatorcontrib><creatorcontrib>Giona, Massimiliano</creatorcontrib><creatorcontrib>Cerbelli, Stefano</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borgogna, Alessia</au><au>Murmura, Maria Anna</au><au>Annesini, Maria Cristina</au><au>Giona, Massimiliano</au><au>Cerbelli, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inertia-driven enhancement of mixing efficiency in microfluidic cross-junctions: a combined Eulerian/Lagrangian approach</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>22</volume><issue>2</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>20</artnum><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>Mixing of a diffusing species entrained in a three-dimensional microfluidic flow-focusing cross-junction is numerically investigated at low Reynolds numbers, 1 ≤ R e ≤ 150 , for a value of the Schmidt number representative of a small solute molecule in water, S c = 10 3 . Accurate three-dimensional simulations of the steady-state incompressible Navier–Stokes equations confirm recent results reported in the literature highlighting the occurrence of different qualitative structures of the flow geometry, whose range of existence depends on Re and on the ratio, R , between the volumetric flowrates of the impinging currents. At low values of R and increasing Re , the flux tube enclosing the solute-rich stream undergoes a topological transition, from the classical flow-focused structure to a multi-branched shape. We here show that this transition causes a nonmonotonic behavior of mixing efficiency with Re at constant flow ratio. The increase in efficiency is the consequence of a progressive compression of the cross-sectional diffusional lengthscale, which provides the mechanism sustaining the transversal Fickian flux even when the Peclet number, P e = R e S c , characterizing mass transport, becomes higher due to the increase in Re . The quantitative assessment of mixing efficiency at the considerably high values of the Peclet number considered ( 10 3 ≤ P e ≤ 1.5 × 10 5 ) is here made possible by a novel method of reconstruction of steady-state cross-sectional concentration maps from velocity-weighted ensemble statistics of noisy trajectories, which does away with the severe numerical diffusion shortcomings associated with classical Eulerian approaches to mass transport in complex 3d flows.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-018-2041-9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3906-6595</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-4982
ispartof Microfluidics and nanofluidics, 2018-02, Vol.22 (2), p.1-15, Article 20
issn 1613-4982
1613-4990
language eng
recordid cdi_proquest_journals_1993492513
source SpringerLink Journals
subjects Analytical Chemistry
Biomedical Engineering and Bioengineering
Compression
Computational fluid dynamics
Computer simulation
Cross-sections
Dye dispersion
Efficiency
Engineering
Engineering Fluid Dynamics
Flow geometry
Flow rates
Inertia
Mass transport
Mathematical models
Nanotechnology and Microengineering
Navier-Stokes equations
Peclet number
Research Paper
Schmidt number
Solutes
Species diffusion
Statistical methods
Steady state
Three dimensional flow
Transport
title Inertia-driven enhancement of mixing efficiency in microfluidic cross-junctions: a combined Eulerian/Lagrangian approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inertia-driven%20enhancement%20of%20mixing%20efficiency%20in%20microfluidic%20cross-junctions:%20a%20combined%20Eulerian/Lagrangian%20approach&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Borgogna,%20Alessia&rft.date=2018-02-01&rft.volume=22&rft.issue=2&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=20&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-018-2041-9&rft_dat=%3Cproquest_cross%3E1993492513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993492513&rft_id=info:pmid/&rfr_iscdi=true