Optimizing and controlling the operation of heat-exchanger networks

A procedure was developed for on‐line optimization and control systems of heat‐exchanger networks, which features a two‐level control structure, one for a constant configuration control system and the other for a supervisor on‐line optimizer. The coordination between levels is achieved by adjusting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE Journal 1998-05, Vol.44 (5), p.1090-1104
Hauptverfasser: Aguilera, Néstor, Marchetti, Jacinto L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1104
container_issue 5
container_start_page 1090
container_title AIChE Journal
container_volume 44
creator Aguilera, Néstor
Marchetti, Jacinto L.
description A procedure was developed for on‐line optimization and control systems of heat‐exchanger networks, which features a two‐level control structure, one for a constant configuration control system and the other for a supervisor on‐line optimizer. The coordination between levels is achieved by adjusting the formulation of the optimization problem to meet requirements of the adopted control system. The general goal is always to work without losing stream temperature targets while keeping the highest energy integration. The operation constraints used for heat‐exchanger and utility units emphasize the computation of heat‐exchanger duties rather than intermediate stream temperatures. This simplifies the modeling task and provides clear links with the limits of the manipulated variables. The optimal condition is determined using LP or NLP, depending on the final problem formulation. Degrees of freedom for optimization and equation constraints for considering simple and multiple bypasses are rigorously discussed. An example used shows how the optimization problem can be adjusted to a specific network design, its expected operating space, and the control configuration. Dynamic simulations also show benefits and limitations of this procedure.
doi_str_mv 10.1002/aic.690440508
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_199335138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29512784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4408-afefd825133fd7eb5a853ff18c64d923848bc57ff33069ed7d3bcf2ef6df5dfd3</originalsourceid><addsrcrecordid>eNp9kM1PGzEQxa2KSoS0R-5b1OtSf6x3vUe0KiltlFxa9Wg59pgYFjvYRiT96-soUcSJ02hGv_fm6SF0SfA1wZh-U05ftz1uGsyx-IAmhDddzXvMz9AEY0zqciDn6CKlh7LRTtAJGpab7J7cP-fvK-VNpYPPMYzjfs9rqMIGosou-CrYag0q17DVa-XvIVYe8muIj-kT-mjVmODzcU7Rn9vvv4cf9Xw5uxtu5rUukUStLFgjKCeMWdPBiivBmbVE6LYxPWWiESvNO2sZw20PpjNspS0F2xrLjTVsir4cfEPKTibtMuh1CexBZ9lyRvu2MFcHZhPD8wukLB_CS_QlliR9z1j5LgpUHyAdQ0oRrNxE96TiThIs91XKUqU8VVn4r0dTlbQabVReu3QSUcqLKS1Yd8Be3Qi79z3lzd3w9sExkEsZtielio-y7VjH5d_FTM7o4hce5oP8yf4DT6qTUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199335138</pqid></control><display><type>article</type><title>Optimizing and controlling the operation of heat-exchanger networks</title><source>Wiley Journals</source><creator>Aguilera, Néstor ; Marchetti, Jacinto L.</creator><creatorcontrib>Aguilera, Néstor ; Marchetti, Jacinto L.</creatorcontrib><description>A procedure was developed for on‐line optimization and control systems of heat‐exchanger networks, which features a two‐level control structure, one for a constant configuration control system and the other for a supervisor on‐line optimizer. The coordination between levels is achieved by adjusting the formulation of the optimization problem to meet requirements of the adopted control system. The general goal is always to work without losing stream temperature targets while keeping the highest energy integration. The operation constraints used for heat‐exchanger and utility units emphasize the computation of heat‐exchanger duties rather than intermediate stream temperatures. This simplifies the modeling task and provides clear links with the limits of the manipulated variables. The optimal condition is determined using LP or NLP, depending on the final problem formulation. Degrees of freedom for optimization and equation constraints for considering simple and multiple bypasses are rigorously discussed. An example used shows how the optimization problem can be adjusted to a specific network design, its expected operating space, and the control configuration. Dynamic simulations also show benefits and limitations of this procedure.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690440508</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical engineering ; CONTROL SYSTEMS ; Devices using thermal energy ; Energy ; ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION ; Energy. Thermal use of fuels ; Exact sciences and technology ; HEAT EXCHANGERS ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat exchangers and evaporators ; MATHEMATICAL MODELS ; NETWORK ANALYSIS ; OPERATION ; OPTIMIZATION ; PROCESS CONTROL</subject><ispartof>AIChE Journal, 1998-05, Vol.44 (5), p.1090-1104</ispartof><rights>Copyright © 1998 American Institute of Chemical Engineers (AIChE)</rights><rights>1998 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers May 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4408-afefd825133fd7eb5a853ff18c64d923848bc57ff33069ed7d3bcf2ef6df5dfd3</citedby><cites>FETCH-LOGICAL-c4408-afefd825133fd7eb5a853ff18c64d923848bc57ff33069ed7d3bcf2ef6df5dfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690440508$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690440508$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2253832$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/653296$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Aguilera, Néstor</creatorcontrib><creatorcontrib>Marchetti, Jacinto L.</creatorcontrib><title>Optimizing and controlling the operation of heat-exchanger networks</title><title>AIChE Journal</title><addtitle>AIChE J</addtitle><description>A procedure was developed for on‐line optimization and control systems of heat‐exchanger networks, which features a two‐level control structure, one for a constant configuration control system and the other for a supervisor on‐line optimizer. The coordination between levels is achieved by adjusting the formulation of the optimization problem to meet requirements of the adopted control system. The general goal is always to work without losing stream temperature targets while keeping the highest energy integration. The operation constraints used for heat‐exchanger and utility units emphasize the computation of heat‐exchanger duties rather than intermediate stream temperatures. This simplifies the modeling task and provides clear links with the limits of the manipulated variables. The optimal condition is determined using LP or NLP, depending on the final problem formulation. Degrees of freedom for optimization and equation constraints for considering simple and multiple bypasses are rigorously discussed. An example used shows how the optimization problem can be adjusted to a specific network design, its expected operating space, and the control configuration. Dynamic simulations also show benefits and limitations of this procedure.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>CONTROL SYSTEMS</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>HEAT EXCHANGERS</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat exchangers and evaporators</subject><subject>MATHEMATICAL MODELS</subject><subject>NETWORK ANALYSIS</subject><subject>OPERATION</subject><subject>OPTIMIZATION</subject><subject>PROCESS CONTROL</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1PGzEQxa2KSoS0R-5b1OtSf6x3vUe0KiltlFxa9Wg59pgYFjvYRiT96-soUcSJ02hGv_fm6SF0SfA1wZh-U05ftz1uGsyx-IAmhDddzXvMz9AEY0zqciDn6CKlh7LRTtAJGpab7J7cP-fvK-VNpYPPMYzjfs9rqMIGosou-CrYag0q17DVa-XvIVYe8muIj-kT-mjVmODzcU7Rn9vvv4cf9Xw5uxtu5rUukUStLFgjKCeMWdPBiivBmbVE6LYxPWWiESvNO2sZw20PpjNspS0F2xrLjTVsir4cfEPKTibtMuh1CexBZ9lyRvu2MFcHZhPD8wukLB_CS_QlliR9z1j5LgpUHyAdQ0oRrNxE96TiThIs91XKUqU8VVn4r0dTlbQabVReu3QSUcqLKS1Yd8Be3Qi79z3lzd3w9sExkEsZtielio-y7VjH5d_FTM7o4hce5oP8yf4DT6qTUA</recordid><startdate>199805</startdate><enddate>199805</enddate><creator>Aguilera, Néstor</creator><creator>Marchetti, Jacinto L.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>199805</creationdate><title>Optimizing and controlling the operation of heat-exchanger networks</title><author>Aguilera, Néstor ; Marchetti, Jacinto L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4408-afefd825133fd7eb5a853ff18c64d923848bc57ff33069ed7d3bcf2ef6df5dfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>CONTROL SYSTEMS</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>HEAT EXCHANGERS</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat exchangers and evaporators</topic><topic>MATHEMATICAL MODELS</topic><topic>NETWORK ANALYSIS</topic><topic>OPERATION</topic><topic>OPTIMIZATION</topic><topic>PROCESS CONTROL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguilera, Néstor</creatorcontrib><creatorcontrib>Marchetti, Jacinto L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>AIChE Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguilera, Néstor</au><au>Marchetti, Jacinto L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing and controlling the operation of heat-exchanger networks</atitle><jtitle>AIChE Journal</jtitle><addtitle>AIChE J</addtitle><date>1998-05</date><risdate>1998</risdate><volume>44</volume><issue>5</issue><spage>1090</spage><epage>1104</epage><pages>1090-1104</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>A procedure was developed for on‐line optimization and control systems of heat‐exchanger networks, which features a two‐level control structure, one for a constant configuration control system and the other for a supervisor on‐line optimizer. The coordination between levels is achieved by adjusting the formulation of the optimization problem to meet requirements of the adopted control system. The general goal is always to work without losing stream temperature targets while keeping the highest energy integration. The operation constraints used for heat‐exchanger and utility units emphasize the computation of heat‐exchanger duties rather than intermediate stream temperatures. This simplifies the modeling task and provides clear links with the limits of the manipulated variables. The optimal condition is determined using LP or NLP, depending on the final problem formulation. Degrees of freedom for optimization and equation constraints for considering simple and multiple bypasses are rigorously discussed. An example used shows how the optimization problem can be adjusted to a specific network design, its expected operating space, and the control configuration. Dynamic simulations also show benefits and limitations of this procedure.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.690440508</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE Journal, 1998-05, Vol.44 (5), p.1090-1104
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_199335138
source Wiley Journals
subjects Applied sciences
Chemical engineering
CONTROL SYSTEMS
Devices using thermal energy
Energy
ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION
Energy. Thermal use of fuels
Exact sciences and technology
HEAT EXCHANGERS
Heat exchangers (included heat transformers, condensers, cooling towers)
Heat exchangers and evaporators
MATHEMATICAL MODELS
NETWORK ANALYSIS
OPERATION
OPTIMIZATION
PROCESS CONTROL
title Optimizing and controlling the operation of heat-exchanger networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20and%20controlling%20the%20operation%20of%20heat-exchanger%20networks&rft.jtitle=AIChE%20Journal&rft.au=Aguilera,%20N%C3%A9stor&rft.date=1998-05&rft.volume=44&rft.issue=5&rft.spage=1090&rft.epage=1104&rft.pages=1090-1104&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690440508&rft_dat=%3Cproquest_osti_%3E29512784%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199335138&rft_id=info:pmid/&rfr_iscdi=true