DNA-mediated sonochemical synthesis and characterization of octahedron-like bismuth molybdate as an active electrode material for supercapacitors

This endeavour reports on octahedron-like bismuth molybdate materials for supercapacitor electrodes as prepared via a facile Deoxyribonucleic acid (DNA)-mediated sonochemical method. The appropriate field emission scanning electron microscopic (FE-SEM) and high resolution transmission electron micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2018-04, Vol.29 (7), p.5862-5872
Hauptverfasser: Yesuraj, J., Suthanthiraraj, S. Austin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5872
container_issue 7
container_start_page 5862
container_title Journal of materials science. Materials in electronics
container_volume 29
creator Yesuraj, J.
Suthanthiraraj, S. Austin
description This endeavour reports on octahedron-like bismuth molybdate materials for supercapacitor electrodes as prepared via a facile Deoxyribonucleic acid (DNA)-mediated sonochemical method. The appropriate field emission scanning electron microscopic (FE-SEM) and high resolution transmission electron microscopic (HR-TEM) analyses have revealed that these freshly prepared bismuth molybdates possess octahedron-like morphologies. The shape and size of bismuth molybdate material were controlled more readily by DNA template so as to form an octahedron shape whereas aggregated morphologies are formed in the case of samples obtained without DNA mediation. The occurrence of probable functional groups and existence of individual constituents in all the above specimens of bismuth molybdate were identified through confocal Raman spectroscopy while their crystalline nature was confirmed through X-ray diffraction (XRD) studies. The electrochemical property of such bismuth molybdates was examined using cyclic voltammetric (CV) and chronopotentiometric (CP) methods. The fact that CV and CP curves observed in the case of bismuth molybdates do not conform to an ideal straight line suggests that the prevailing charge storage follows faradic redox reaction mechanism. Interestingly, octahedron-like bismuth molybdate has delivered a maximum capacitance of 641 Fg − 1 at a scan rate of 5 mV s − 1 while bismuth molybdate electrodes are found to exhibit excellent cycle stability up to 1000 successive CV cycles at a scan rate of 100 mVs − 1 .
doi_str_mv 10.1007/s10854-018-8558-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1993159409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993159409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3047b9d286dbd1c6712347ab159ba4f33c20aab626a5b5ffbe88ee6d1f43e5c3</originalsourceid><addsrcrecordid>eNp1kL1uFDEURkcIpCyBB6CzRG1ij3_GU0bhL1KUNCnorGv7DuMwM15sL9LyFrxxvFoKGqrbfOdc6XTdO84-cMaGq8KZUZIybqhRylD9ottxNQgqTf_tZbdjoxqoVH1_0b0u5YkxpqUwu-7Px_trumKIUDGQkrbkZ1yjh4WU41ZnLLEQ2ALxM2TwFXP8DTWmjaSJJF9hxpDTRpf4A4mLZT3UmaxpObrQjAROMGlc_IUEF_Q1p4BkhZOo_ZhSJuWwx-xhDz7WlMub7tUES8G3f-9l9_j50-PNV3r38OX25vqOesF1pYLJwY2hNzq4wL0eeC_kAI6r0YGchPA9A3C616CcmiaHxiDqwCcpUHlx2b0_a_c5_TxgqfYpHfLWPlo-jqJpJBvbip9XPqdSMk52n-MK-Wg5s6fw9hzetvD2FN7qxvRnprTt9h3zP-b_Qs-stYpu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993159409</pqid></control><display><type>article</type><title>DNA-mediated sonochemical synthesis and characterization of octahedron-like bismuth molybdate as an active electrode material for supercapacitors</title><source>SpringerLink Journals</source><creator>Yesuraj, J. ; Suthanthiraraj, S. Austin</creator><creatorcontrib>Yesuraj, J. ; Suthanthiraraj, S. Austin</creatorcontrib><description>This endeavour reports on octahedron-like bismuth molybdate materials for supercapacitor electrodes as prepared via a facile Deoxyribonucleic acid (DNA)-mediated sonochemical method. The appropriate field emission scanning electron microscopic (FE-SEM) and high resolution transmission electron microscopic (HR-TEM) analyses have revealed that these freshly prepared bismuth molybdates possess octahedron-like morphologies. The shape and size of bismuth molybdate material were controlled more readily by DNA template so as to form an octahedron shape whereas aggregated morphologies are formed in the case of samples obtained without DNA mediation. The occurrence of probable functional groups and existence of individual constituents in all the above specimens of bismuth molybdate were identified through confocal Raman spectroscopy while their crystalline nature was confirmed through X-ray diffraction (XRD) studies. The electrochemical property of such bismuth molybdates was examined using cyclic voltammetric (CV) and chronopotentiometric (CP) methods. The fact that CV and CP curves observed in the case of bismuth molybdates do not conform to an ideal straight line suggests that the prevailing charge storage follows faradic redox reaction mechanism. Interestingly, octahedron-like bismuth molybdate has delivered a maximum capacitance of 641 Fg − 1 at a scan rate of 5 mV s − 1 while bismuth molybdate electrodes are found to exhibit excellent cycle stability up to 1000 successive CV cycles at a scan rate of 100 mVs − 1 .</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-018-8558-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bismuth ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Deoxyribonucleic acid ; DNA ; Electrode materials ; Electrodes ; Field emission microscopy ; Functional groups ; Materials Science ; Molybdates ; Optical and Electronic Materials ; Reaction mechanisms ; Supercapacitors ; X-ray diffraction</subject><ispartof>Journal of materials science. Materials in electronics, 2018-04, Vol.29 (7), p.5862-5872</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3047b9d286dbd1c6712347ab159ba4f33c20aab626a5b5ffbe88ee6d1f43e5c3</citedby><cites>FETCH-LOGICAL-c316t-3047b9d286dbd1c6712347ab159ba4f33c20aab626a5b5ffbe88ee6d1f43e5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-018-8558-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-018-8558-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yesuraj, J.</creatorcontrib><creatorcontrib>Suthanthiraraj, S. Austin</creatorcontrib><title>DNA-mediated sonochemical synthesis and characterization of octahedron-like bismuth molybdate as an active electrode material for supercapacitors</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>This endeavour reports on octahedron-like bismuth molybdate materials for supercapacitor electrodes as prepared via a facile Deoxyribonucleic acid (DNA)-mediated sonochemical method. The appropriate field emission scanning electron microscopic (FE-SEM) and high resolution transmission electron microscopic (HR-TEM) analyses have revealed that these freshly prepared bismuth molybdates possess octahedron-like morphologies. The shape and size of bismuth molybdate material were controlled more readily by DNA template so as to form an octahedron shape whereas aggregated morphologies are formed in the case of samples obtained without DNA mediation. The occurrence of probable functional groups and existence of individual constituents in all the above specimens of bismuth molybdate were identified through confocal Raman spectroscopy while their crystalline nature was confirmed through X-ray diffraction (XRD) studies. The electrochemical property of such bismuth molybdates was examined using cyclic voltammetric (CV) and chronopotentiometric (CP) methods. The fact that CV and CP curves observed in the case of bismuth molybdates do not conform to an ideal straight line suggests that the prevailing charge storage follows faradic redox reaction mechanism. Interestingly, octahedron-like bismuth molybdate has delivered a maximum capacitance of 641 Fg − 1 at a scan rate of 5 mV s − 1 while bismuth molybdate electrodes are found to exhibit excellent cycle stability up to 1000 successive CV cycles at a scan rate of 100 mVs − 1 .</description><subject>Bismuth</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Field emission microscopy</subject><subject>Functional groups</subject><subject>Materials Science</subject><subject>Molybdates</subject><subject>Optical and Electronic Materials</subject><subject>Reaction mechanisms</subject><subject>Supercapacitors</subject><subject>X-ray diffraction</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kL1uFDEURkcIpCyBB6CzRG1ij3_GU0bhL1KUNCnorGv7DuMwM15sL9LyFrxxvFoKGqrbfOdc6XTdO84-cMaGq8KZUZIybqhRylD9ottxNQgqTf_tZbdjoxqoVH1_0b0u5YkxpqUwu-7Px_trumKIUDGQkrbkZ1yjh4WU41ZnLLEQ2ALxM2TwFXP8DTWmjaSJJF9hxpDTRpf4A4mLZT3UmaxpObrQjAROMGlc_IUEF_Q1p4BkhZOo_ZhSJuWwx-xhDz7WlMub7tUES8G3f-9l9_j50-PNV3r38OX25vqOesF1pYLJwY2hNzq4wL0eeC_kAI6r0YGchPA9A3C616CcmiaHxiDqwCcpUHlx2b0_a_c5_TxgqfYpHfLWPlo-jqJpJBvbip9XPqdSMk52n-MK-Wg5s6fw9hzetvD2FN7qxvRnprTt9h3zP-b_Qs-stYpu</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Yesuraj, J.</creator><creator>Suthanthiraraj, S. Austin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20180401</creationdate><title>DNA-mediated sonochemical synthesis and characterization of octahedron-like bismuth molybdate as an active electrode material for supercapacitors</title><author>Yesuraj, J. ; Suthanthiraraj, S. Austin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3047b9d286dbd1c6712347ab159ba4f33c20aab626a5b5ffbe88ee6d1f43e5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bismuth</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Field emission microscopy</topic><topic>Functional groups</topic><topic>Materials Science</topic><topic>Molybdates</topic><topic>Optical and Electronic Materials</topic><topic>Reaction mechanisms</topic><topic>Supercapacitors</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yesuraj, J.</creatorcontrib><creatorcontrib>Suthanthiraraj, S. Austin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yesuraj, J.</au><au>Suthanthiraraj, S. Austin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA-mediated sonochemical synthesis and characterization of octahedron-like bismuth molybdate as an active electrode material for supercapacitors</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>29</volume><issue>7</issue><spage>5862</spage><epage>5872</epage><pages>5862-5872</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>This endeavour reports on octahedron-like bismuth molybdate materials for supercapacitor electrodes as prepared via a facile Deoxyribonucleic acid (DNA)-mediated sonochemical method. The appropriate field emission scanning electron microscopic (FE-SEM) and high resolution transmission electron microscopic (HR-TEM) analyses have revealed that these freshly prepared bismuth molybdates possess octahedron-like morphologies. The shape and size of bismuth molybdate material were controlled more readily by DNA template so as to form an octahedron shape whereas aggregated morphologies are formed in the case of samples obtained without DNA mediation. The occurrence of probable functional groups and existence of individual constituents in all the above specimens of bismuth molybdate were identified through confocal Raman spectroscopy while their crystalline nature was confirmed through X-ray diffraction (XRD) studies. The electrochemical property of such bismuth molybdates was examined using cyclic voltammetric (CV) and chronopotentiometric (CP) methods. The fact that CV and CP curves observed in the case of bismuth molybdates do not conform to an ideal straight line suggests that the prevailing charge storage follows faradic redox reaction mechanism. Interestingly, octahedron-like bismuth molybdate has delivered a maximum capacitance of 641 Fg − 1 at a scan rate of 5 mV s − 1 while bismuth molybdate electrodes are found to exhibit excellent cycle stability up to 1000 successive CV cycles at a scan rate of 100 mVs − 1 .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-018-8558-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2018-04, Vol.29 (7), p.5862-5872
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_1993159409
source SpringerLink Journals
subjects Bismuth
Characterization and Evaluation of Materials
Chemistry and Materials Science
Deoxyribonucleic acid
DNA
Electrode materials
Electrodes
Field emission microscopy
Functional groups
Materials Science
Molybdates
Optical and Electronic Materials
Reaction mechanisms
Supercapacitors
X-ray diffraction
title DNA-mediated sonochemical synthesis and characterization of octahedron-like bismuth molybdate as an active electrode material for supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T02%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA-mediated%20sonochemical%20synthesis%20and%20characterization%20of%20octahedron-like%20bismuth%20molybdate%20as%20an%20active%20electrode%20material%20for%20supercapacitors&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Yesuraj,%20J.&rft.date=2018-04-01&rft.volume=29&rft.issue=7&rft.spage=5862&rft.epage=5872&rft.pages=5862-5872&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-018-8558-6&rft_dat=%3Cproquest_cross%3E1993159409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993159409&rft_id=info:pmid/&rfr_iscdi=true