A Comparative Assessment of Models to Predict Monthly Rainfall in Australia

Accurate rainfall prediction is a challenging task. It is especially challenging in Australia where the climate is highly variable. Australia’s climatic zones range from high rainfall tropical regions in the north to the driest desert region in the interior. The performance of prediction models may...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources management 2018-03, Vol.32 (5), p.1777-1794
Hauptverfasser: Bagirov, Adil M., Mahmood, Arshad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1794
container_issue 5
container_start_page 1777
container_title Water resources management
container_volume 32
creator Bagirov, Adil M.
Mahmood, Arshad
description Accurate rainfall prediction is a challenging task. It is especially challenging in Australia where the climate is highly variable. Australia’s climatic zones range from high rainfall tropical regions in the north to the driest desert region in the interior. The performance of prediction models may vary depending on climatic conditions. It is, therefore, important to assess and compare the performance of these models in different climatic zones. This paper examines the performance of data driven models such as the support vector machines for regression, the multiple linear regression, the k -nearest neighbors and the artificial neural networks for monthly rainfall prediction in Australia depending on climatic conditions. Rainfall data with five meteorological variables over the period of 1970–2014 from 24 geographically diverse weather stations are used for this purpose. The prediction performance of each model was evaluated by comparing observed and predicted rainfall using various measures for prediction accuracy.
doi_str_mv 10.1007/s11269-018-1903-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1993156443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993156443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8d7bac292ee2ed79dfefda6d62483cae03924d4d0e07dc03461a3e850e9d6b1e3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB19GbR9NmWQZfqCii65BpbrVDpx2TjNB_b4Zx4cbVhcP5zoWPkHMOlxygvIqcC20Y8IpxA5JNB2TGi1Iyrgs4JDMwApgqFT8mJzGuADJlYEYearoY1xsXXOq-kdYxYoxrHBIdW_o0euwjTSN9Cei7JuVkSJ_9RF9dN7Su72k30HobU3B9507JUc4inv3eOXm_uX5b3LHH59v7Rf3IGsl1YpUvl64RRiAK9KXxLbbeaa-FqmTjEKQRyisPCKVvQCrNncSqADReLznKObnY727C-LXFmOxq3IYhv7TcGMkLrZTMLb5vNWGMMWBrN6FbuzBZDnbnzO6d2ezM7pzZKTNiz8TcHT4w_Fn-F_oBu31vng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993156443</pqid></control><display><type>article</type><title>A Comparative Assessment of Models to Predict Monthly Rainfall in Australia</title><source>SpringerLink Journals</source><creator>Bagirov, Adil M. ; Mahmood, Arshad</creator><creatorcontrib>Bagirov, Adil M. ; Mahmood, Arshad</creatorcontrib><description>Accurate rainfall prediction is a challenging task. It is especially challenging in Australia where the climate is highly variable. Australia’s climatic zones range from high rainfall tropical regions in the north to the driest desert region in the interior. The performance of prediction models may vary depending on climatic conditions. It is, therefore, important to assess and compare the performance of these models in different climatic zones. This paper examines the performance of data driven models such as the support vector machines for regression, the multiple linear regression, the k -nearest neighbors and the artificial neural networks for monthly rainfall prediction in Australia depending on climatic conditions. Rainfall data with five meteorological variables over the period of 1970–2014 from 24 geographically diverse weather stations are used for this purpose. The prediction performance of each model was evaluated by comparing observed and predicted rainfall using various measures for prediction accuracy.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-018-1903-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial neural networks ; Atmospheric Sciences ; Civil Engineering ; Climatic conditions ; Climatic zones ; Earth and Environmental Science ; Earth Sciences ; Environment ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrologic data ; Hydrology/Water Resources ; Neural networks ; Performance prediction ; Prediction models ; Rain ; Rainfall ; Support vector machines ; Tropical climate ; Tropical environment ; Tropical environments ; Weather stations</subject><ispartof>Water resources management, 2018-03, Vol.32 (5), p.1777-1794</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>Water Resources Management is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8d7bac292ee2ed79dfefda6d62483cae03924d4d0e07dc03461a3e850e9d6b1e3</citedby><cites>FETCH-LOGICAL-c316t-8d7bac292ee2ed79dfefda6d62483cae03924d4d0e07dc03461a3e850e9d6b1e3</cites><orcidid>0000-0003-2075-1699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11269-018-1903-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11269-018-1903-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bagirov, Adil M.</creatorcontrib><creatorcontrib>Mahmood, Arshad</creatorcontrib><title>A Comparative Assessment of Models to Predict Monthly Rainfall in Australia</title><title>Water resources management</title><addtitle>Water Resour Manage</addtitle><description>Accurate rainfall prediction is a challenging task. It is especially challenging in Australia where the climate is highly variable. Australia’s climatic zones range from high rainfall tropical regions in the north to the driest desert region in the interior. The performance of prediction models may vary depending on climatic conditions. It is, therefore, important to assess and compare the performance of these models in different climatic zones. This paper examines the performance of data driven models such as the support vector machines for regression, the multiple linear regression, the k -nearest neighbors and the artificial neural networks for monthly rainfall prediction in Australia depending on climatic conditions. Rainfall data with five meteorological variables over the period of 1970–2014 from 24 geographically diverse weather stations are used for this purpose. The prediction performance of each model was evaluated by comparing observed and predicted rainfall using various measures for prediction accuracy.</description><subject>Artificial neural networks</subject><subject>Atmospheric Sciences</subject><subject>Civil Engineering</subject><subject>Climatic conditions</subject><subject>Climatic zones</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrologic data</subject><subject>Hydrology/Water Resources</subject><subject>Neural networks</subject><subject>Performance prediction</subject><subject>Prediction models</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Support vector machines</subject><subject>Tropical climate</subject><subject>Tropical environment</subject><subject>Tropical environments</subject><subject>Weather stations</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcB19GbR9NmWQZfqCii65BpbrVDpx2TjNB_b4Zx4cbVhcP5zoWPkHMOlxygvIqcC20Y8IpxA5JNB2TGi1Iyrgs4JDMwApgqFT8mJzGuADJlYEYearoY1xsXXOq-kdYxYoxrHBIdW_o0euwjTSN9Cei7JuVkSJ_9RF9dN7Su72k30HobU3B9507JUc4inv3eOXm_uX5b3LHH59v7Rf3IGsl1YpUvl64RRiAK9KXxLbbeaa-FqmTjEKQRyisPCKVvQCrNncSqADReLznKObnY727C-LXFmOxq3IYhv7TcGMkLrZTMLb5vNWGMMWBrN6FbuzBZDnbnzO6d2ezM7pzZKTNiz8TcHT4w_Fn-F_oBu31vng</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Bagirov, Adil M.</creator><creator>Mahmood, Arshad</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2075-1699</orcidid></search><sort><creationdate>20180301</creationdate><title>A Comparative Assessment of Models to Predict Monthly Rainfall in Australia</title><author>Bagirov, Adil M. ; Mahmood, Arshad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8d7bac292ee2ed79dfefda6d62483cae03924d4d0e07dc03461a3e850e9d6b1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Atmospheric Sciences</topic><topic>Civil Engineering</topic><topic>Climatic conditions</topic><topic>Climatic zones</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrologic data</topic><topic>Hydrology/Water Resources</topic><topic>Neural networks</topic><topic>Performance prediction</topic><topic>Prediction models</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Support vector machines</topic><topic>Tropical climate</topic><topic>Tropical environment</topic><topic>Tropical environments</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagirov, Adil M.</creatorcontrib><creatorcontrib>Mahmood, Arshad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagirov, Adil M.</au><au>Mahmood, Arshad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparative Assessment of Models to Predict Monthly Rainfall in Australia</atitle><jtitle>Water resources management</jtitle><stitle>Water Resour Manage</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>32</volume><issue>5</issue><spage>1777</spage><epage>1794</epage><pages>1777-1794</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><abstract>Accurate rainfall prediction is a challenging task. It is especially challenging in Australia where the climate is highly variable. Australia’s climatic zones range from high rainfall tropical regions in the north to the driest desert region in the interior. The performance of prediction models may vary depending on climatic conditions. It is, therefore, important to assess and compare the performance of these models in different climatic zones. This paper examines the performance of data driven models such as the support vector machines for regression, the multiple linear regression, the k -nearest neighbors and the artificial neural networks for monthly rainfall prediction in Australia depending on climatic conditions. Rainfall data with five meteorological variables over the period of 1970–2014 from 24 geographically diverse weather stations are used for this purpose. The prediction performance of each model was evaluated by comparing observed and predicted rainfall using various measures for prediction accuracy.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11269-018-1903-y</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2075-1699</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-4741
ispartof Water resources management, 2018-03, Vol.32 (5), p.1777-1794
issn 0920-4741
1573-1650
language eng
recordid cdi_proquest_journals_1993156443
source SpringerLink Journals
subjects Artificial neural networks
Atmospheric Sciences
Civil Engineering
Climatic conditions
Climatic zones
Earth and Environmental Science
Earth Sciences
Environment
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrologic data
Hydrology/Water Resources
Neural networks
Performance prediction
Prediction models
Rain
Rainfall
Support vector machines
Tropical climate
Tropical environment
Tropical environments
Weather stations
title A Comparative Assessment of Models to Predict Monthly Rainfall in Australia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparative%20Assessment%20of%20Models%20to%20Predict%20Monthly%20Rainfall%20in%20Australia&rft.jtitle=Water%20resources%20management&rft.au=Bagirov,%20Adil%20M.&rft.date=2018-03-01&rft.volume=32&rft.issue=5&rft.spage=1777&rft.epage=1794&rft.pages=1777-1794&rft.issn=0920-4741&rft.eissn=1573-1650&rft_id=info:doi/10.1007/s11269-018-1903-y&rft_dat=%3Cproquest_cross%3E1993156443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993156443&rft_id=info:pmid/&rfr_iscdi=true