Design for model parameter uncertainty using nonlinear confidence regions

An accurate method presented accounts for uncertain model parameters in nonlinear process optimization problems. The model representation is considered in terms of algebraic equations. Uncertain quantity parameters are often discretized into a number of finite values that are then used in multiperio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2001-08, Vol.47 (8), p.1794-1804
Hauptverfasser: Rooney, William C., Biegler, Lorenz T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1804
container_issue 8
container_start_page 1794
container_title AIChE journal
container_volume 47
creator Rooney, William C.
Biegler, Lorenz T.
description An accurate method presented accounts for uncertain model parameters in nonlinear process optimization problems. The model representation is considered in terms of algebraic equations. Uncertain quantity parameters are often discretized into a number of finite values that are then used in multiperiod optimization problems. These discrete values usually range between some lower and upper bound that can be derived from individual confidence intervals. Frequently, more than one uncertain parameter is estimated at a time from a single set of experiments. Thus, using simple lower and upper bounds to describe these parameters may not be accurate, since it assumes the parameters are uncorrelated. In 1999 Rooney and Biegler showed the importance of including parameter correlation in design problems by using elliptical joint confidence regions to describe the correlation among the uncertain model parameters. In chemical engineering systems, however, the parameter estimation problem is often highly nonlinear, and the elliptical confidence regions derived from these problems may not be accurate enough to capture the actual model parameter uncertainty. In this work, the description of model parameter uncertainty is improved by using confidence regions derived from the likelihood ratio test. It captures the nonlinearities efficiently and accurately in the parameter estimation problem. Several examples solved show the importance of accurately capturing the actual model parameter uncertainty at the design stage.
doi_str_mv 10.1002/aic.690470811
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_199311439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>78497528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3771-3551367ab0bd83855baa93e281172cb7cfea64d6aacaccd7ca1c5965bd9c5e713</originalsourceid><addsrcrecordid>eNp9kN9LwzAQx4MoOKePvhfxtTNpmqZ5HFXnYFPwB_oWrmk6Mrt0Ji26_97IxtiTcHDc8bnv9_gidEnwiGCc3IBRo0zglOOckCM0ICzlMROYHaMBxpjEYUFO0Zn3yzAlPE8GaHqrvVnYqG5dtGor3URrcLDSnXZRb5V2HRjbbaLeG7uIbGsbYzW4SLW2NpUOROT0wrTWn6OTGhqvL3Z9iN7u716Lh3j2NJkW41msKOckpowRmnEocVnlNGesBBBUJ-FlnqiSq1pDllYZgAKlKq6AKCYyVlZCMc0JHaKrre7atV-99p1ctr2zwVISISghKRUBireQcq33Ttdy7cwK3EYSLP_CkiEsuQ8r8Nc7UfAKmtqBVcYfHAkaKmB8i32bRm_-15TjaXFosHvI-E7_7C_BfcqMU87k--NEznExL17SD_lMfwEomYm3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199311439</pqid></control><display><type>article</type><title>Design for model parameter uncertainty using nonlinear confidence regions</title><source>Wiley Online Library Journals</source><creator>Rooney, William C. ; Biegler, Lorenz T.</creator><creatorcontrib>Rooney, William C. ; Biegler, Lorenz T.</creatorcontrib><description>An accurate method presented accounts for uncertain model parameters in nonlinear process optimization problems. The model representation is considered in terms of algebraic equations. Uncertain quantity parameters are often discretized into a number of finite values that are then used in multiperiod optimization problems. These discrete values usually range between some lower and upper bound that can be derived from individual confidence intervals. Frequently, more than one uncertain parameter is estimated at a time from a single set of experiments. Thus, using simple lower and upper bounds to describe these parameters may not be accurate, since it assumes the parameters are uncorrelated. In 1999 Rooney and Biegler showed the importance of including parameter correlation in design problems by using elliptical joint confidence regions to describe the correlation among the uncertain model parameters. In chemical engineering systems, however, the parameter estimation problem is often highly nonlinear, and the elliptical confidence regions derived from these problems may not be accurate enough to capture the actual model parameter uncertainty. In this work, the description of model parameter uncertainty is improved by using confidence regions derived from the likelihood ratio test. It captures the nonlinearities efficiently and accurately in the parameter estimation problem. Several examples solved show the importance of accurately capturing the actual model parameter uncertainty at the design stage.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690470811</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical engineering ; Crystallization, leaching, miscellaneous separations ; Exact sciences and technology</subject><ispartof>AIChE journal, 2001-08, Vol.47 (8), p.1794-1804</ispartof><rights>Copyright © 2001 American Institute of Chemical Engineers (AIChE)</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Aug 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3771-3551367ab0bd83855baa93e281172cb7cfea64d6aacaccd7ca1c5965bd9c5e713</citedby><cites>FETCH-LOGICAL-c3771-3551367ab0bd83855baa93e281172cb7cfea64d6aacaccd7ca1c5965bd9c5e713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690470811$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690470811$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1093093$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rooney, William C.</creatorcontrib><creatorcontrib>Biegler, Lorenz T.</creatorcontrib><title>Design for model parameter uncertainty using nonlinear confidence regions</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>An accurate method presented accounts for uncertain model parameters in nonlinear process optimization problems. The model representation is considered in terms of algebraic equations. Uncertain quantity parameters are often discretized into a number of finite values that are then used in multiperiod optimization problems. These discrete values usually range between some lower and upper bound that can be derived from individual confidence intervals. Frequently, more than one uncertain parameter is estimated at a time from a single set of experiments. Thus, using simple lower and upper bounds to describe these parameters may not be accurate, since it assumes the parameters are uncorrelated. In 1999 Rooney and Biegler showed the importance of including parameter correlation in design problems by using elliptical joint confidence regions to describe the correlation among the uncertain model parameters. In chemical engineering systems, however, the parameter estimation problem is often highly nonlinear, and the elliptical confidence regions derived from these problems may not be accurate enough to capture the actual model parameter uncertainty. In this work, the description of model parameter uncertainty is improved by using confidence regions derived from the likelihood ratio test. It captures the nonlinearities efficiently and accurately in the parameter estimation problem. Several examples solved show the importance of accurately capturing the actual model parameter uncertainty at the design stage.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Crystallization, leaching, miscellaneous separations</subject><subject>Exact sciences and technology</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kN9LwzAQx4MoOKePvhfxtTNpmqZ5HFXnYFPwB_oWrmk6Mrt0Ji26_97IxtiTcHDc8bnv9_gidEnwiGCc3IBRo0zglOOckCM0ICzlMROYHaMBxpjEYUFO0Zn3yzAlPE8GaHqrvVnYqG5dtGor3URrcLDSnXZRb5V2HRjbbaLeG7uIbGsbYzW4SLW2NpUOROT0wrTWn6OTGhqvL3Z9iN7u716Lh3j2NJkW41msKOckpowRmnEocVnlNGesBBBUJ-FlnqiSq1pDllYZgAKlKq6AKCYyVlZCMc0JHaKrre7atV-99p1ctr2zwVISISghKRUBireQcq33Ttdy7cwK3EYSLP_CkiEsuQ8r8Nc7UfAKmtqBVcYfHAkaKmB8i32bRm_-15TjaXFosHvI-E7_7C_BfcqMU87k--NEznExL17SD_lMfwEomYm3</recordid><startdate>200108</startdate><enddate>200108</enddate><creator>Rooney, William C.</creator><creator>Biegler, Lorenz T.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>200108</creationdate><title>Design for model parameter uncertainty using nonlinear confidence regions</title><author>Rooney, William C. ; Biegler, Lorenz T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3771-3551367ab0bd83855baa93e281172cb7cfea64d6aacaccd7ca1c5965bd9c5e713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Crystallization, leaching, miscellaneous separations</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rooney, William C.</creatorcontrib><creatorcontrib>Biegler, Lorenz T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rooney, William C.</au><au>Biegler, Lorenz T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design for model parameter uncertainty using nonlinear confidence regions</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2001-08</date><risdate>2001</risdate><volume>47</volume><issue>8</issue><spage>1794</spage><epage>1804</epage><pages>1794-1804</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>An accurate method presented accounts for uncertain model parameters in nonlinear process optimization problems. The model representation is considered in terms of algebraic equations. Uncertain quantity parameters are often discretized into a number of finite values that are then used in multiperiod optimization problems. These discrete values usually range between some lower and upper bound that can be derived from individual confidence intervals. Frequently, more than one uncertain parameter is estimated at a time from a single set of experiments. Thus, using simple lower and upper bounds to describe these parameters may not be accurate, since it assumes the parameters are uncorrelated. In 1999 Rooney and Biegler showed the importance of including parameter correlation in design problems by using elliptical joint confidence regions to describe the correlation among the uncertain model parameters. In chemical engineering systems, however, the parameter estimation problem is often highly nonlinear, and the elliptical confidence regions derived from these problems may not be accurate enough to capture the actual model parameter uncertainty. In this work, the description of model parameter uncertainty is improved by using confidence regions derived from the likelihood ratio test. It captures the nonlinearities efficiently and accurately in the parameter estimation problem. Several examples solved show the importance of accurately capturing the actual model parameter uncertainty at the design stage.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.690470811</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2001-08, Vol.47 (8), p.1794-1804
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_199311439
source Wiley Online Library Journals
subjects Applied sciences
Chemical engineering
Crystallization, leaching, miscellaneous separations
Exact sciences and technology
title Design for model parameter uncertainty using nonlinear confidence regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20for%20model%20parameter%20uncertainty%20using%20nonlinear%20confidence%20regions&rft.jtitle=AIChE%20journal&rft.au=Rooney,%20William%20C.&rft.date=2001-08&rft.volume=47&rft.issue=8&rft.spage=1794&rft.epage=1804&rft.pages=1794-1804&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690470811&rft_dat=%3Cproquest_cross%3E78497528%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199311439&rft_id=info:pmid/&rfr_iscdi=true