AUTOMOBILE INSURANCE RATEMAKING IN THE PRESENCE OF ASYMMETRICAL INFORMATION: SUMMARY

Automobile insurance is an example of a market where multi-period contracts are observed. This form of contract can be justified by asymmetrical information between the insurer and the insured. Insurers use risk classification together with bonus-malus systems. In this paper we show that the actual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied econometrics (Chichester, England) England), 1992-04, Vol.7 (2), p.149
Hauptverfasser: Dionne, G, Vanasse, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 149
container_title Journal of applied econometrics (Chichester, England)
container_volume 7
creator Dionne, G
Vanasse, C
description Automobile insurance is an example of a market where multi-period contracts are observed. This form of contract can be justified by asymmetrical information between the insurer and the insured. Insurers use risk classification together with bonus-malus systems. In this paper we show that the actual methodology for the integration of these two approaches can lead to inconsistencies. We develop a statistical model that adequately integrates risk classification and experience rating. For this purpose we present Poisson and negative binomial models with regression component in order to use all available information in the estimation of accident distribution. A bonus-malus system which integrates a priori and a posteriori information on an individual basis is proposed, and insurance premium tables are derived as a function of time, past accidents and the significant variables in the regression. Statistical results were obtained from a sample of 19,013 drivers.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_199305767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>433698551</sourcerecordid><originalsourceid>FETCH-proquest_journals_1993057673</originalsourceid><addsrcrecordid>eNqNyk8LgjAcxvERBdmf9zC6Cz-VqTsumTl0W8x56CQd7CCR5fL9Z9AL6PTA9_MskBcApX4QErJEHqRp5CchCddo41wPADFA4qGSNVZLfRQVx0LVjWEq49gwyyUrhTrNEduC47PhNf-SzjGrL1Jya0TGqtlzbSSzQqsdWt2ud9ftf7tFh5zbrPCf4_CaOvdu-2EaHzO1AaURkCROor9OH-yUNrs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199305767</pqid></control><display><type>article</type><title>AUTOMOBILE INSURANCE RATEMAKING IN THE PRESENCE OF ASYMMETRICAL INFORMATION: SUMMARY</title><source>Jstor Complete Legacy</source><creator>Dionne, G ; Vanasse, C</creator><creatorcontrib>Dionne, G ; Vanasse, C</creatorcontrib><description>Automobile insurance is an example of a market where multi-period contracts are observed. This form of contract can be justified by asymmetrical information between the insurer and the insured. Insurers use risk classification together with bonus-malus systems. In this paper we show that the actual methodology for the integration of these two approaches can lead to inconsistencies. We develop a statistical model that adequately integrates risk classification and experience rating. For this purpose we present Poisson and negative binomial models with regression component in order to use all available information in the estimation of accident distribution. A bonus-malus system which integrates a priori and a posteriori information on an individual basis is proposed, and insurance premium tables are derived as a function of time, past accidents and the significant variables in the regression. Statistical results were obtained from a sample of 19,013 drivers.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>CODEN: JAECET</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>Adverse selection ; Automobile insurance ; Binomial distribution ; Classification ; Econometrics ; Insurance coverage ; Insurance premiums ; Moral hazard ; Tariffs ; Traffic accidents &amp; safety</subject><ispartof>Journal of applied econometrics (Chichester, England), 1992-04, Vol.7 (2), p.149</ispartof><rights>Copyright Wiley Periodicals Inc. Apr-Jun 1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782</link.rule.ids></links><search><creatorcontrib>Dionne, G</creatorcontrib><creatorcontrib>Vanasse, C</creatorcontrib><title>AUTOMOBILE INSURANCE RATEMAKING IN THE PRESENCE OF ASYMMETRICAL INFORMATION: SUMMARY</title><title>Journal of applied econometrics (Chichester, England)</title><description>Automobile insurance is an example of a market where multi-period contracts are observed. This form of contract can be justified by asymmetrical information between the insurer and the insured. Insurers use risk classification together with bonus-malus systems. In this paper we show that the actual methodology for the integration of these two approaches can lead to inconsistencies. We develop a statistical model that adequately integrates risk classification and experience rating. For this purpose we present Poisson and negative binomial models with regression component in order to use all available information in the estimation of accident distribution. A bonus-malus system which integrates a priori and a posteriori information on an individual basis is proposed, and insurance premium tables are derived as a function of time, past accidents and the significant variables in the regression. Statistical results were obtained from a sample of 19,013 drivers.</description><subject>Adverse selection</subject><subject>Automobile insurance</subject><subject>Binomial distribution</subject><subject>Classification</subject><subject>Econometrics</subject><subject>Insurance coverage</subject><subject>Insurance premiums</subject><subject>Moral hazard</subject><subject>Tariffs</subject><subject>Traffic accidents &amp; safety</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNyk8LgjAcxvERBdmf9zC6Cz-VqTsumTl0W8x56CQd7CCR5fL9Z9AL6PTA9_MskBcApX4QErJEHqRp5CchCddo41wPADFA4qGSNVZLfRQVx0LVjWEq49gwyyUrhTrNEduC47PhNf-SzjGrL1Jya0TGqtlzbSSzQqsdWt2ud9ftf7tFh5zbrPCf4_CaOvdu-2EaHzO1AaURkCROor9OH-yUNrs</recordid><startdate>19920401</startdate><enddate>19920401</enddate><creator>Dionne, G</creator><creator>Vanasse, C</creator><general>Wiley Periodicals Inc</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0A</scope><scope>M0C</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>19920401</creationdate><title>AUTOMOBILE INSURANCE RATEMAKING IN THE PRESENCE OF ASYMMETRICAL INFORMATION</title><author>Dionne, G ; Vanasse, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_1993057673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Adverse selection</topic><topic>Automobile insurance</topic><topic>Binomial distribution</topic><topic>Classification</topic><topic>Econometrics</topic><topic>Insurance coverage</topic><topic>Insurance premiums</topic><topic>Moral hazard</topic><topic>Tariffs</topic><topic>Traffic accidents &amp; safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dionne, G</creatorcontrib><creatorcontrib>Vanasse, C</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Archive</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dionne, G</au><au>Vanasse, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AUTOMOBILE INSURANCE RATEMAKING IN THE PRESENCE OF ASYMMETRICAL INFORMATION: SUMMARY</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><date>1992-04-01</date><risdate>1992</risdate><volume>7</volume><issue>2</issue><spage>149</spage><pages>149-</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><coden>JAECET</coden><abstract>Automobile insurance is an example of a market where multi-period contracts are observed. This form of contract can be justified by asymmetrical information between the insurer and the insured. Insurers use risk classification together with bonus-malus systems. In this paper we show that the actual methodology for the integration of these two approaches can lead to inconsistencies. We develop a statistical model that adequately integrates risk classification and experience rating. For this purpose we present Poisson and negative binomial models with regression component in order to use all available information in the estimation of accident distribution. A bonus-malus system which integrates a priori and a posteriori information on an individual basis is proposed, and insurance premium tables are derived as a function of time, past accidents and the significant variables in the regression. Statistical results were obtained from a sample of 19,013 drivers.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub></addata></record>
fulltext fulltext
identifier ISSN: 0883-7252
ispartof Journal of applied econometrics (Chichester, England), 1992-04, Vol.7 (2), p.149
issn 0883-7252
1099-1255
language eng
recordid cdi_proquest_journals_199305767
source Jstor Complete Legacy
subjects Adverse selection
Automobile insurance
Binomial distribution
Classification
Econometrics
Insurance coverage
Insurance premiums
Moral hazard
Tariffs
Traffic accidents & safety
title AUTOMOBILE INSURANCE RATEMAKING IN THE PRESENCE OF ASYMMETRICAL INFORMATION: SUMMARY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AUTOMOBILE%20INSURANCE%20RATEMAKING%20IN%20THE%20PRESENCE%20OF%20ASYMMETRICAL%20INFORMATION:%20SUMMARY&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Dionne,%20G&rft.date=1992-04-01&rft.volume=7&rft.issue=2&rft.spage=149&rft.pages=149-&rft.issn=0883-7252&rft.eissn=1099-1255&rft.coden=JAECET&rft_id=info:doi/&rft_dat=%3Cproquest%3E433698551%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199305767&rft_id=info:pmid/&rfr_iscdi=true