Pivot, Cut, and Dive: a heuristic for 0-1 mixed integer programming

This paper describes a heuristic for 0-1 mixed-integer linear programming problems, focusing on "stand-alone" implementation. Our approach is built around concave "merit functions" measuring solution integrality, and consists of four layers: gradient-based pivoting, probing pivot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heuristics 2007-10, Vol.13 (5), p.471-503
Hauptverfasser: Eckstein, Jonathan, Nediak, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a heuristic for 0-1 mixed-integer linear programming problems, focusing on "stand-alone" implementation. Our approach is built around concave "merit functions" measuring solution integrality, and consists of four layers: gradient-based pivoting, probing pivoting, convexity/intersection cutting, and diving on blocks of variables. The concavity of the merit function plays an important role in the first and third layers, as well as in connecting the four layers. We present both the mathematical and software details of a test implementation, along with computational results for several variants. [PUBLICATION ABSTRACT]
ISSN:1381-1231
1572-9397
DOI:10.1007/s10732-007-9021-7