A bridged crack perpendicular to a bimaterial interface

We consider the contribution of fully or partially crack bridging to a mode I or mode II crack perpendicular to a bimaterial interface. The crack faces are subjected to both shear and normal bridging forces, and the bridging stiffnesses are allowed to vary arbitrarily along the crack. The resulting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2018-05, Vol.229 (5), p.2063-2078
Hauptverfasser: Yang, Moxuan, Wang, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2078
container_issue 5
container_start_page 2063
container_title Acta mechanica
container_volume 229
creator Yang, Moxuan
Wang, Xu
description We consider the contribution of fully or partially crack bridging to a mode I or mode II crack perpendicular to a bimaterial interface. The crack faces are subjected to both shear and normal bridging forces, and the bridging stiffnesses are allowed to vary arbitrarily along the crack. The resulting singular integral equations are solved numerically by combining the Chebyshev polynomials and the collocation method. The proposed method is proved reliable and efficient for the bridged crack problem under consideration. It is observed that the stress intensity factors at the two crack tips and the crack opening displacement are suppressed due to the toughening and stiffening effects of crack bridging, respectively. In particular, when the crack is embedded in the right stiffer (or softer) half-plane and is only partially bridged at its left (or right) portion, new phenomena can be observed. More specifically, with suitably chosen bridging zone and bridging stiffness, the behavior of the stress intensity factors and the crack opening displacement for a bridged crack can be quite different from those for an unbridged crack, and the crack can even propagate toward the opposite direction to that for an unbridged crack.
doi_str_mv 10.1007/s00707-017-2086-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1992956775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A550168435</galeid><sourcerecordid>A550168435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-fe00900809017f87fbe8b4d78b7945df21f4226b6ca3281e037d9661d566f1363</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmPwA7hV4pxhp03SHKeJL2kSFzhHaZNMGV1bku6wf0-mcuCCIjmx9T6O_RJyj7BCAPmYcgBJASVlUAt6uiALFKioUKW8JAsAQMqVhGtyk9I-Z0xWuCByXTQx2J2zRRtN-1WMLo6ut6E9diYW01CYogkHM7kYTFeEPj-8ad0tufKmS-7u916Sz-enj80r3b6_vG3WW9qWnE_UOwAFUOeA0tfSN65uKivrRqqKW8_QV4yJRrSmZDU6KKVVQqDlQngsRbkkD3PfMQ7fR5cmvR-Osc9falSKKS6k5Fm1mlU70zkdej9MeZl8rDuEduidD7m-5hxQ1FV5BnAG2jikFJ3XY8xbxpNG0GdD9WyozmPrs6H6lBk2Mylr-52Lf0b5F_oBYBZ2eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992956775</pqid></control><display><type>article</type><title>A bridged crack perpendicular to a bimaterial interface</title><source>Springer Nature</source><creator>Yang, Moxuan ; Wang, Xu</creator><creatorcontrib>Yang, Moxuan ; Wang, Xu</creatorcontrib><description>We consider the contribution of fully or partially crack bridging to a mode I or mode II crack perpendicular to a bimaterial interface. The crack faces are subjected to both shear and normal bridging forces, and the bridging stiffnesses are allowed to vary arbitrarily along the crack. The resulting singular integral equations are solved numerically by combining the Chebyshev polynomials and the collocation method. The proposed method is proved reliable and efficient for the bridged crack problem under consideration. It is observed that the stress intensity factors at the two crack tips and the crack opening displacement are suppressed due to the toughening and stiffening effects of crack bridging, respectively. In particular, when the crack is embedded in the right stiffer (or softer) half-plane and is only partially bridged at its left (or right) portion, new phenomena can be observed. More specifically, with suitably chosen bridging zone and bridging stiffness, the behavior of the stress intensity factors and the crack opening displacement for a bridged crack can be quite different from those for an unbridged crack, and the crack can even propagate toward the opposite direction to that for an unbridged crack.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-017-2086-y</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Bridges ; Chebyshev approximation ; Classical and Continuum Physics ; Collocation methods ; Control ; Crack bridging ; Crack opening displacement ; Crack tips ; Cracks ; Dynamical Systems ; Engineering ; Engineering Thermodynamics ; Heat and Mass Transfer ; Interfaces ; Mathematical analysis ; Original Paper ; Singular integral equations ; Solid Mechanics ; Stiffening ; Stiffness ; Stress intensity factors ; Theoretical and Applied Mechanics ; Tips ; Vibration</subject><ispartof>Acta mechanica, 2018-05, Vol.229 (5), p.2063-2078</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Acta Mechanica is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-fe00900809017f87fbe8b4d78b7945df21f4226b6ca3281e037d9661d566f1363</citedby><cites>FETCH-LOGICAL-c355t-fe00900809017f87fbe8b4d78b7945df21f4226b6ca3281e037d9661d566f1363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-017-2086-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-017-2086-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yang, Moxuan</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><title>A bridged crack perpendicular to a bimaterial interface</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>We consider the contribution of fully or partially crack bridging to a mode I or mode II crack perpendicular to a bimaterial interface. The crack faces are subjected to both shear and normal bridging forces, and the bridging stiffnesses are allowed to vary arbitrarily along the crack. The resulting singular integral equations are solved numerically by combining the Chebyshev polynomials and the collocation method. The proposed method is proved reliable and efficient for the bridged crack problem under consideration. It is observed that the stress intensity factors at the two crack tips and the crack opening displacement are suppressed due to the toughening and stiffening effects of crack bridging, respectively. In particular, when the crack is embedded in the right stiffer (or softer) half-plane and is only partially bridged at its left (or right) portion, new phenomena can be observed. More specifically, with suitably chosen bridging zone and bridging stiffness, the behavior of the stress intensity factors and the crack opening displacement for a bridged crack can be quite different from those for an unbridged crack, and the crack can even propagate toward the opposite direction to that for an unbridged crack.</description><subject>Bridges</subject><subject>Chebyshev approximation</subject><subject>Classical and Continuum Physics</subject><subject>Collocation methods</subject><subject>Control</subject><subject>Crack bridging</subject><subject>Crack opening displacement</subject><subject>Crack tips</subject><subject>Cracks</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Interfaces</subject><subject>Mathematical analysis</subject><subject>Original Paper</subject><subject>Singular integral equations</subject><subject>Solid Mechanics</subject><subject>Stiffening</subject><subject>Stiffness</subject><subject>Stress intensity factors</subject><subject>Theoretical and Applied Mechanics</subject><subject>Tips</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1PwzAMhiMEEmPwA7hV4pxhp03SHKeJL2kSFzhHaZNMGV1bku6wf0-mcuCCIjmx9T6O_RJyj7BCAPmYcgBJASVlUAt6uiALFKioUKW8JAsAQMqVhGtyk9I-Z0xWuCByXTQx2J2zRRtN-1WMLo6ut6E9diYW01CYogkHM7kYTFeEPj-8ad0tufKmS-7u916Sz-enj80r3b6_vG3WW9qWnE_UOwAFUOeA0tfSN65uKivrRqqKW8_QV4yJRrSmZDU6KKVVQqDlQngsRbkkD3PfMQ7fR5cmvR-Osc9falSKKS6k5Fm1mlU70zkdej9MeZl8rDuEduidD7m-5hxQ1FV5BnAG2jikFJ3XY8xbxpNG0GdD9WyozmPrs6H6lBk2Mylr-52Lf0b5F_oBYBZ2eQ</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Yang, Moxuan</creator><creator>Wang, Xu</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20180501</creationdate><title>A bridged crack perpendicular to a bimaterial interface</title><author>Yang, Moxuan ; Wang, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-fe00900809017f87fbe8b4d78b7945df21f4226b6ca3281e037d9661d566f1363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bridges</topic><topic>Chebyshev approximation</topic><topic>Classical and Continuum Physics</topic><topic>Collocation methods</topic><topic>Control</topic><topic>Crack bridging</topic><topic>Crack opening displacement</topic><topic>Crack tips</topic><topic>Cracks</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Interfaces</topic><topic>Mathematical analysis</topic><topic>Original Paper</topic><topic>Singular integral equations</topic><topic>Solid Mechanics</topic><topic>Stiffening</topic><topic>Stiffness</topic><topic>Stress intensity factors</topic><topic>Theoretical and Applied Mechanics</topic><topic>Tips</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Moxuan</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Moxuan</au><au>Wang, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bridged crack perpendicular to a bimaterial interface</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>229</volume><issue>5</issue><spage>2063</spage><epage>2078</epage><pages>2063-2078</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>We consider the contribution of fully or partially crack bridging to a mode I or mode II crack perpendicular to a bimaterial interface. The crack faces are subjected to both shear and normal bridging forces, and the bridging stiffnesses are allowed to vary arbitrarily along the crack. The resulting singular integral equations are solved numerically by combining the Chebyshev polynomials and the collocation method. The proposed method is proved reliable and efficient for the bridged crack problem under consideration. It is observed that the stress intensity factors at the two crack tips and the crack opening displacement are suppressed due to the toughening and stiffening effects of crack bridging, respectively. In particular, when the crack is embedded in the right stiffer (or softer) half-plane and is only partially bridged at its left (or right) portion, new phenomena can be observed. More specifically, with suitably chosen bridging zone and bridging stiffness, the behavior of the stress intensity factors and the crack opening displacement for a bridged crack can be quite different from those for an unbridged crack, and the crack can even propagate toward the opposite direction to that for an unbridged crack.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-017-2086-y</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2018-05, Vol.229 (5), p.2063-2078
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_journals_1992956775
source Springer Nature
subjects Bridges
Chebyshev approximation
Classical and Continuum Physics
Collocation methods
Control
Crack bridging
Crack opening displacement
Crack tips
Cracks
Dynamical Systems
Engineering
Engineering Thermodynamics
Heat and Mass Transfer
Interfaces
Mathematical analysis
Original Paper
Singular integral equations
Solid Mechanics
Stiffening
Stiffness
Stress intensity factors
Theoretical and Applied Mechanics
Tips
Vibration
title A bridged crack perpendicular to a bimaterial interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A06%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bridged%20crack%20perpendicular%20to%20a%20bimaterial%20interface&rft.jtitle=Acta%20mechanica&rft.au=Yang,%20Moxuan&rft.date=2018-05-01&rft.volume=229&rft.issue=5&rft.spage=2063&rft.epage=2078&rft.pages=2063-2078&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-017-2086-y&rft_dat=%3Cgale_proqu%3EA550168435%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992956775&rft_id=info:pmid/&rft_galeid=A550168435&rfr_iscdi=true