Mechanism of electrocardiographic T-wave flattening in diabetes mellitus: experimental and simulation study

In the present study we investigated the contribution of ventricular repolarization time (RT) dispersion (the maximal difference in RT) and RT gradients (the differences in RT in apicobasal, anteroposterior and interventricular directions) to T-wave flattening in a setting of experimental diabetes m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological research 2017-01, Vol.66 (5), p.781-789
Hauptverfasser: Sedova, K A, Azarov, J E, Arteyeva, N V, Ovechkin, A O, Vaykshnorayte, M A, Vityazev, V A, Bernikova, O G, Shmakov, D N, Kneppo, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 789
container_issue 5
container_start_page 781
container_title Physiological research
container_volume 66
creator Sedova, K A
Azarov, J E
Arteyeva, N V
Ovechkin, A O
Vaykshnorayte, M A
Vityazev, V A
Bernikova, O G
Shmakov, D N
Kneppo, P
description In the present study we investigated the contribution of ventricular repolarization time (RT) dispersion (the maximal difference in RT) and RT gradients (the differences in RT in apicobasal, anteroposterior and interventricular directions) to T-wave flattening in a setting of experimental diabetes mellitus. In 9 healthy and 11 diabetic (alloxan model) open-chest rabbits, we measured RT in ventricular epicardial electrograms. To specify the contributions of apicobasal, interventricular and anteroposterior RT gradients and RT dispersion to the body surface potentials we determined T-wave voltage differences between modified upper- and lower-chest precordial leads (T-wave amplitude dispersions, TWAD). Expression of RT gradients and RT dispersion in the correspondent TWAD parameters was studied by computer simulations. Diabetic rabbits demonstrated flattened T-waves in precordial leads associated with increased anteroposterior and decreased apicobasal RT gradients (P
doi_str_mv 10.33549/physiolres.933494
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992863578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992863578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-3d48fe415493c6f08efb3452c35cf8a7fb8ee1ee8e9e6a460924f5ee4465b26c3</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqXwAyyQJdYpju0kNjuEeElFbMo6cpxx65I4wXaA_j0RLbCazT13Zg5C5ymZM5ZxedWvt8F2jYcwl4xxyQ_QNBWEJlIW7BBNichpIjgRE3QSwoYQWpCCHaMJFQUjgsopensGvVbOhhZ3BkMDOvpOK1_bbuVVv7YaL5NP9QHYNCpGcNatsHW4tqqCCAG30DQ2DuEaw1cP3rbgomqwcjUOth1GyHYOhzjU21N0ZFQT4Gw_Z-j1_m55-5gsXh6ebm8WiWacxoTVXBjg6fgh07khAkzFeEY1y7QRqjCVAEgBBEjIFc-JpNxkAJznWUVzzWboctfb--59gBDLTTd4N64sUympyFlWiDFFdyntuxA8mLIfr1d-W6ak_PFb_vstd35H6GJfPVQt1H_Ir1D2DeVXfEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992863578</pqid></control><display><type>article</type><title>Mechanism of electrocardiographic T-wave flattening in diabetes mellitus: experimental and simulation study</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sedova, K A ; Azarov, J E ; Arteyeva, N V ; Ovechkin, A O ; Vaykshnorayte, M A ; Vityazev, V A ; Bernikova, O G ; Shmakov, D N ; Kneppo, P</creator><creatorcontrib>Sedova, K A ; Azarov, J E ; Arteyeva, N V ; Ovechkin, A O ; Vaykshnorayte, M A ; Vityazev, V A ; Bernikova, O G ; Shmakov, D N ; Kneppo, P</creatorcontrib><description>In the present study we investigated the contribution of ventricular repolarization time (RT) dispersion (the maximal difference in RT) and RT gradients (the differences in RT in apicobasal, anteroposterior and interventricular directions) to T-wave flattening in a setting of experimental diabetes mellitus. In 9 healthy and 11 diabetic (alloxan model) open-chest rabbits, we measured RT in ventricular epicardial electrograms. To specify the contributions of apicobasal, interventricular and anteroposterior RT gradients and RT dispersion to the body surface potentials we determined T-wave voltage differences between modified upper- and lower-chest precordial leads (T-wave amplitude dispersions, TWAD). Expression of RT gradients and RT dispersion in the correspondent TWAD parameters was studied by computer simulations. Diabetic rabbits demonstrated flattened T-waves in precordial leads associated with increased anteroposterior and decreased apicobasal RT gradients (P&lt;0.05) due to RT prolongation at the apex. For diabetics, simulations predicted the preserved T-vector length and altered sagittal and longitudinal TWAD proven by experimental measurements. T-wave flattening in the diabetic rabbits was not due to changes in RT dispersion, but reflected the redistributed ventricular repolarization pattern with prolonged apical repolarization resulting in increased anteroposterior and decreased apicobasal RT gradients.</description><identifier>ISSN: 0862-8408</identifier><identifier>EISSN: 1802-9973</identifier><identifier>DOI: 10.33549/physiolres.933494</identifier><identifier>PMID: 28730829</identifier><language>eng</language><publisher>Czech Republic: Institute of Physiology</publisher><subject>Animals ; Blood Glucose - metabolism ; Body Surface Potential Mapping - methods ; Cardiac arrhythmia ; Chest ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Experimental - blood ; Diabetes Mellitus, Experimental - physiopathology ; Electrocardiography ; Electrocardiography - methods ; Female ; Heart ; Laboratory animals ; Male ; Mathematical models ; Rabbits ; Rodents ; Studies ; Ventricle</subject><ispartof>Physiological research, 2017-01, Vol.66 (5), p.781-789</ispartof><rights>Copyright Institute of Physiology 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-3d48fe415493c6f08efb3452c35cf8a7fb8ee1ee8e9e6a460924f5ee4465b26c3</citedby><cites>FETCH-LOGICAL-c342t-3d48fe415493c6f08efb3452c35cf8a7fb8ee1ee8e9e6a460924f5ee4465b26c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28730829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sedova, K A</creatorcontrib><creatorcontrib>Azarov, J E</creatorcontrib><creatorcontrib>Arteyeva, N V</creatorcontrib><creatorcontrib>Ovechkin, A O</creatorcontrib><creatorcontrib>Vaykshnorayte, M A</creatorcontrib><creatorcontrib>Vityazev, V A</creatorcontrib><creatorcontrib>Bernikova, O G</creatorcontrib><creatorcontrib>Shmakov, D N</creatorcontrib><creatorcontrib>Kneppo, P</creatorcontrib><title>Mechanism of electrocardiographic T-wave flattening in diabetes mellitus: experimental and simulation study</title><title>Physiological research</title><addtitle>Physiol Res</addtitle><description>In the present study we investigated the contribution of ventricular repolarization time (RT) dispersion (the maximal difference in RT) and RT gradients (the differences in RT in apicobasal, anteroposterior and interventricular directions) to T-wave flattening in a setting of experimental diabetes mellitus. In 9 healthy and 11 diabetic (alloxan model) open-chest rabbits, we measured RT in ventricular epicardial electrograms. To specify the contributions of apicobasal, interventricular and anteroposterior RT gradients and RT dispersion to the body surface potentials we determined T-wave voltage differences between modified upper- and lower-chest precordial leads (T-wave amplitude dispersions, TWAD). Expression of RT gradients and RT dispersion in the correspondent TWAD parameters was studied by computer simulations. Diabetic rabbits demonstrated flattened T-waves in precordial leads associated with increased anteroposterior and decreased apicobasal RT gradients (P&lt;0.05) due to RT prolongation at the apex. For diabetics, simulations predicted the preserved T-vector length and altered sagittal and longitudinal TWAD proven by experimental measurements. T-wave flattening in the diabetic rabbits was not due to changes in RT dispersion, but reflected the redistributed ventricular repolarization pattern with prolonged apical repolarization resulting in increased anteroposterior and decreased apicobasal RT gradients.</description><subject>Animals</subject><subject>Blood Glucose - metabolism</subject><subject>Body Surface Potential Mapping - methods</subject><subject>Cardiac arrhythmia</subject><subject>Chest</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Experimental - blood</subject><subject>Diabetes Mellitus, Experimental - physiopathology</subject><subject>Electrocardiography</subject><subject>Electrocardiography - methods</subject><subject>Female</subject><subject>Heart</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Rabbits</subject><subject>Rodents</subject><subject>Studies</subject><subject>Ventricle</subject><issn>0862-8408</issn><issn>1802-9973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkMtOwzAQRS0EoqXwAyyQJdYpju0kNjuEeElFbMo6cpxx65I4wXaA_j0RLbCazT13Zg5C5ymZM5ZxedWvt8F2jYcwl4xxyQ_QNBWEJlIW7BBNichpIjgRE3QSwoYQWpCCHaMJFQUjgsopensGvVbOhhZ3BkMDOvpOK1_bbuVVv7YaL5NP9QHYNCpGcNatsHW4tqqCCAG30DQ2DuEaw1cP3rbgomqwcjUOth1GyHYOhzjU21N0ZFQT4Gw_Z-j1_m55-5gsXh6ebm8WiWacxoTVXBjg6fgh07khAkzFeEY1y7QRqjCVAEgBBEjIFc-JpNxkAJznWUVzzWboctfb--59gBDLTTd4N64sUympyFlWiDFFdyntuxA8mLIfr1d-W6ak_PFb_vstd35H6GJfPVQt1H_Ir1D2DeVXfEI</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Sedova, K A</creator><creator>Azarov, J E</creator><creator>Arteyeva, N V</creator><creator>Ovechkin, A O</creator><creator>Vaykshnorayte, M A</creator><creator>Vityazev, V A</creator><creator>Bernikova, O G</creator><creator>Shmakov, D N</creator><creator>Kneppo, P</creator><general>Institute of Physiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170101</creationdate><title>Mechanism of electrocardiographic T-wave flattening in diabetes mellitus: experimental and simulation study</title><author>Sedova, K A ; Azarov, J E ; Arteyeva, N V ; Ovechkin, A O ; Vaykshnorayte, M A ; Vityazev, V A ; Bernikova, O G ; Shmakov, D N ; Kneppo, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-3d48fe415493c6f08efb3452c35cf8a7fb8ee1ee8e9e6a460924f5ee4465b26c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Blood Glucose - metabolism</topic><topic>Body Surface Potential Mapping - methods</topic><topic>Cardiac arrhythmia</topic><topic>Chest</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Experimental - blood</topic><topic>Diabetes Mellitus, Experimental - physiopathology</topic><topic>Electrocardiography</topic><topic>Electrocardiography - methods</topic><topic>Female</topic><topic>Heart</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Rabbits</topic><topic>Rodents</topic><topic>Studies</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sedova, K A</creatorcontrib><creatorcontrib>Azarov, J E</creatorcontrib><creatorcontrib>Arteyeva, N V</creatorcontrib><creatorcontrib>Ovechkin, A O</creatorcontrib><creatorcontrib>Vaykshnorayte, M A</creatorcontrib><creatorcontrib>Vityazev, V A</creatorcontrib><creatorcontrib>Bernikova, O G</creatorcontrib><creatorcontrib>Shmakov, D N</creatorcontrib><creatorcontrib>Kneppo, P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Physiological research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sedova, K A</au><au>Azarov, J E</au><au>Arteyeva, N V</au><au>Ovechkin, A O</au><au>Vaykshnorayte, M A</au><au>Vityazev, V A</au><au>Bernikova, O G</au><au>Shmakov, D N</au><au>Kneppo, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of electrocardiographic T-wave flattening in diabetes mellitus: experimental and simulation study</atitle><jtitle>Physiological research</jtitle><addtitle>Physiol Res</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>66</volume><issue>5</issue><spage>781</spage><epage>789</epage><pages>781-789</pages><issn>0862-8408</issn><eissn>1802-9973</eissn><abstract>In the present study we investigated the contribution of ventricular repolarization time (RT) dispersion (the maximal difference in RT) and RT gradients (the differences in RT in apicobasal, anteroposterior and interventricular directions) to T-wave flattening in a setting of experimental diabetes mellitus. In 9 healthy and 11 diabetic (alloxan model) open-chest rabbits, we measured RT in ventricular epicardial electrograms. To specify the contributions of apicobasal, interventricular and anteroposterior RT gradients and RT dispersion to the body surface potentials we determined T-wave voltage differences between modified upper- and lower-chest precordial leads (T-wave amplitude dispersions, TWAD). Expression of RT gradients and RT dispersion in the correspondent TWAD parameters was studied by computer simulations. Diabetic rabbits demonstrated flattened T-waves in precordial leads associated with increased anteroposterior and decreased apicobasal RT gradients (P&lt;0.05) due to RT prolongation at the apex. For diabetics, simulations predicted the preserved T-vector length and altered sagittal and longitudinal TWAD proven by experimental measurements. T-wave flattening in the diabetic rabbits was not due to changes in RT dispersion, but reflected the redistributed ventricular repolarization pattern with prolonged apical repolarization resulting in increased anteroposterior and decreased apicobasal RT gradients.</abstract><cop>Czech Republic</cop><pub>Institute of Physiology</pub><pmid>28730829</pmid><doi>10.33549/physiolres.933494</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0862-8408
ispartof Physiological research, 2017-01, Vol.66 (5), p.781-789
issn 0862-8408
1802-9973
language eng
recordid cdi_proquest_journals_1992863578
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Animals
Blood Glucose - metabolism
Body Surface Potential Mapping - methods
Cardiac arrhythmia
Chest
Diabetes
Diabetes mellitus
Diabetes Mellitus, Experimental - blood
Diabetes Mellitus, Experimental - physiopathology
Electrocardiography
Electrocardiography - methods
Female
Heart
Laboratory animals
Male
Mathematical models
Rabbits
Rodents
Studies
Ventricle
title Mechanism of electrocardiographic T-wave flattening in diabetes mellitus: experimental and simulation study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20electrocardiographic%20T-wave%20flattening%20in%20diabetes%20mellitus:%20experimental%20and%20simulation%20study&rft.jtitle=Physiological%20research&rft.au=Sedova,%20K%20A&rft.date=2017-01-01&rft.volume=66&rft.issue=5&rft.spage=781&rft.epage=789&rft.pages=781-789&rft.issn=0862-8408&rft.eissn=1802-9973&rft_id=info:doi/10.33549/physiolres.933494&rft_dat=%3Cproquest_cross%3E1992863578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992863578&rft_id=info:pmid/28730829&rfr_iscdi=true