Mechanism of electrocardiographic T-wave flattening in diabetes mellitus: experimental and simulation study
In the present study we investigated the contribution of ventricular repolarization time (RT) dispersion (the maximal difference in RT) and RT gradients (the differences in RT in apicobasal, anteroposterior and interventricular directions) to T-wave flattening in a setting of experimental diabetes m...
Gespeichert in:
Veröffentlicht in: | Physiological research 2017-01, Vol.66 (5), p.781-789 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 789 |
---|---|
container_issue | 5 |
container_start_page | 781 |
container_title | Physiological research |
container_volume | 66 |
creator | Sedova, K A Azarov, J E Arteyeva, N V Ovechkin, A O Vaykshnorayte, M A Vityazev, V A Bernikova, O G Shmakov, D N Kneppo, P |
description | In the present study we investigated the contribution of ventricular repolarization time (RT) dispersion (the maximal difference in RT) and RT gradients (the differences in RT in apicobasal, anteroposterior and interventricular directions) to T-wave flattening in a setting of experimental diabetes mellitus. In 9 healthy and 11 diabetic (alloxan model) open-chest rabbits, we measured RT in ventricular epicardial electrograms. To specify the contributions of apicobasal, interventricular and anteroposterior RT gradients and RT dispersion to the body surface potentials we determined T-wave voltage differences between modified upper- and lower-chest precordial leads (T-wave amplitude dispersions, TWAD). Expression of RT gradients and RT dispersion in the correspondent TWAD parameters was studied by computer simulations. Diabetic rabbits demonstrated flattened T-waves in precordial leads associated with increased anteroposterior and decreased apicobasal RT gradients (P |
doi_str_mv | 10.33549/physiolres.933494 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1992863578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992863578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-3d48fe415493c6f08efb3452c35cf8a7fb8ee1ee8e9e6a460924f5ee4465b26c3</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqXwAyyQJdYpju0kNjuEeElFbMo6cpxx65I4wXaA_j0RLbCazT13Zg5C5ymZM5ZxedWvt8F2jYcwl4xxyQ_QNBWEJlIW7BBNichpIjgRE3QSwoYQWpCCHaMJFQUjgsopensGvVbOhhZ3BkMDOvpOK1_bbuVVv7YaL5NP9QHYNCpGcNatsHW4tqqCCAG30DQ2DuEaw1cP3rbgomqwcjUOth1GyHYOhzjU21N0ZFQT4Gw_Z-j1_m55-5gsXh6ebm8WiWacxoTVXBjg6fgh07khAkzFeEY1y7QRqjCVAEgBBEjIFc-JpNxkAJznWUVzzWboctfb--59gBDLTTd4N64sUympyFlWiDFFdyntuxA8mLIfr1d-W6ak_PFb_vstd35H6GJfPVQt1H_Ir1D2DeVXfEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992863578</pqid></control><display><type>article</type><title>Mechanism of electrocardiographic T-wave flattening in diabetes mellitus: experimental and simulation study</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sedova, K A ; Azarov, J E ; Arteyeva, N V ; Ovechkin, A O ; Vaykshnorayte, M A ; Vityazev, V A ; Bernikova, O G ; Shmakov, D N ; Kneppo, P</creator><creatorcontrib>Sedova, K A ; Azarov, J E ; Arteyeva, N V ; Ovechkin, A O ; Vaykshnorayte, M A ; Vityazev, V A ; Bernikova, O G ; Shmakov, D N ; Kneppo, P</creatorcontrib><description>In the present study we investigated the contribution of ventricular repolarization time (RT) dispersion (the maximal difference in RT) and RT gradients (the differences in RT in apicobasal, anteroposterior and interventricular directions) to T-wave flattening in a setting of experimental diabetes mellitus. In 9 healthy and 11 diabetic (alloxan model) open-chest rabbits, we measured RT in ventricular epicardial electrograms. To specify the contributions of apicobasal, interventricular and anteroposterior RT gradients and RT dispersion to the body surface potentials we determined T-wave voltage differences between modified upper- and lower-chest precordial leads (T-wave amplitude dispersions, TWAD). Expression of RT gradients and RT dispersion in the correspondent TWAD parameters was studied by computer simulations. Diabetic rabbits demonstrated flattened T-waves in precordial leads associated with increased anteroposterior and decreased apicobasal RT gradients (P<0.05) due to RT prolongation at the apex. For diabetics, simulations predicted the preserved T-vector length and altered sagittal and longitudinal TWAD proven by experimental measurements. T-wave flattening in the diabetic rabbits was not due to changes in RT dispersion, but reflected the redistributed ventricular repolarization pattern with prolonged apical repolarization resulting in increased anteroposterior and decreased apicobasal RT gradients.</description><identifier>ISSN: 0862-8408</identifier><identifier>EISSN: 1802-9973</identifier><identifier>DOI: 10.33549/physiolres.933494</identifier><identifier>PMID: 28730829</identifier><language>eng</language><publisher>Czech Republic: Institute of Physiology</publisher><subject>Animals ; Blood Glucose - metabolism ; Body Surface Potential Mapping - methods ; Cardiac arrhythmia ; Chest ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Experimental - blood ; Diabetes Mellitus, Experimental - physiopathology ; Electrocardiography ; Electrocardiography - methods ; Female ; Heart ; Laboratory animals ; Male ; Mathematical models ; Rabbits ; Rodents ; Studies ; Ventricle</subject><ispartof>Physiological research, 2017-01, Vol.66 (5), p.781-789</ispartof><rights>Copyright Institute of Physiology 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-3d48fe415493c6f08efb3452c35cf8a7fb8ee1ee8e9e6a460924f5ee4465b26c3</citedby><cites>FETCH-LOGICAL-c342t-3d48fe415493c6f08efb3452c35cf8a7fb8ee1ee8e9e6a460924f5ee4465b26c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28730829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sedova, K A</creatorcontrib><creatorcontrib>Azarov, J E</creatorcontrib><creatorcontrib>Arteyeva, N V</creatorcontrib><creatorcontrib>Ovechkin, A O</creatorcontrib><creatorcontrib>Vaykshnorayte, M A</creatorcontrib><creatorcontrib>Vityazev, V A</creatorcontrib><creatorcontrib>Bernikova, O G</creatorcontrib><creatorcontrib>Shmakov, D N</creatorcontrib><creatorcontrib>Kneppo, P</creatorcontrib><title>Mechanism of electrocardiographic T-wave flattening in diabetes mellitus: experimental and simulation study</title><title>Physiological research</title><addtitle>Physiol Res</addtitle><description>In the present study we investigated the contribution of ventricular repolarization time (RT) dispersion (the maximal difference in RT) and RT gradients (the differences in RT in apicobasal, anteroposterior and interventricular directions) to T-wave flattening in a setting of experimental diabetes mellitus. In 9 healthy and 11 diabetic (alloxan model) open-chest rabbits, we measured RT in ventricular epicardial electrograms. To specify the contributions of apicobasal, interventricular and anteroposterior RT gradients and RT dispersion to the body surface potentials we determined T-wave voltage differences between modified upper- and lower-chest precordial leads (T-wave amplitude dispersions, TWAD). Expression of RT gradients and RT dispersion in the correspondent TWAD parameters was studied by computer simulations. Diabetic rabbits demonstrated flattened T-waves in precordial leads associated with increased anteroposterior and decreased apicobasal RT gradients (P<0.05) due to RT prolongation at the apex. For diabetics, simulations predicted the preserved T-vector length and altered sagittal and longitudinal TWAD proven by experimental measurements. T-wave flattening in the diabetic rabbits was not due to changes in RT dispersion, but reflected the redistributed ventricular repolarization pattern with prolonged apical repolarization resulting in increased anteroposterior and decreased apicobasal RT gradients.</description><subject>Animals</subject><subject>Blood Glucose - metabolism</subject><subject>Body Surface Potential Mapping - methods</subject><subject>Cardiac arrhythmia</subject><subject>Chest</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Experimental - blood</subject><subject>Diabetes Mellitus, Experimental - physiopathology</subject><subject>Electrocardiography</subject><subject>Electrocardiography - methods</subject><subject>Female</subject><subject>Heart</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Rabbits</subject><subject>Rodents</subject><subject>Studies</subject><subject>Ventricle</subject><issn>0862-8408</issn><issn>1802-9973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkMtOwzAQRS0EoqXwAyyQJdYpju0kNjuEeElFbMo6cpxx65I4wXaA_j0RLbCazT13Zg5C5ymZM5ZxedWvt8F2jYcwl4xxyQ_QNBWEJlIW7BBNichpIjgRE3QSwoYQWpCCHaMJFQUjgsopensGvVbOhhZ3BkMDOvpOK1_bbuVVv7YaL5NP9QHYNCpGcNatsHW4tqqCCAG30DQ2DuEaw1cP3rbgomqwcjUOth1GyHYOhzjU21N0ZFQT4Gw_Z-j1_m55-5gsXh6ebm8WiWacxoTVXBjg6fgh07khAkzFeEY1y7QRqjCVAEgBBEjIFc-JpNxkAJznWUVzzWboctfb--59gBDLTTd4N64sUympyFlWiDFFdyntuxA8mLIfr1d-W6ak_PFb_vstd35H6GJfPVQt1H_Ir1D2DeVXfEI</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Sedova, K A</creator><creator>Azarov, J E</creator><creator>Arteyeva, N V</creator><creator>Ovechkin, A O</creator><creator>Vaykshnorayte, M A</creator><creator>Vityazev, V A</creator><creator>Bernikova, O G</creator><creator>Shmakov, D N</creator><creator>Kneppo, P</creator><general>Institute of Physiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170101</creationdate><title>Mechanism of electrocardiographic T-wave flattening in diabetes mellitus: experimental and simulation study</title><author>Sedova, K A ; Azarov, J E ; Arteyeva, N V ; Ovechkin, A O ; Vaykshnorayte, M A ; Vityazev, V A ; Bernikova, O G ; Shmakov, D N ; Kneppo, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-3d48fe415493c6f08efb3452c35cf8a7fb8ee1ee8e9e6a460924f5ee4465b26c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Blood Glucose - metabolism</topic><topic>Body Surface Potential Mapping - methods</topic><topic>Cardiac arrhythmia</topic><topic>Chest</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Experimental - blood</topic><topic>Diabetes Mellitus, Experimental - physiopathology</topic><topic>Electrocardiography</topic><topic>Electrocardiography - methods</topic><topic>Female</topic><topic>Heart</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Rabbits</topic><topic>Rodents</topic><topic>Studies</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sedova, K A</creatorcontrib><creatorcontrib>Azarov, J E</creatorcontrib><creatorcontrib>Arteyeva, N V</creatorcontrib><creatorcontrib>Ovechkin, A O</creatorcontrib><creatorcontrib>Vaykshnorayte, M A</creatorcontrib><creatorcontrib>Vityazev, V A</creatorcontrib><creatorcontrib>Bernikova, O G</creatorcontrib><creatorcontrib>Shmakov, D N</creatorcontrib><creatorcontrib>Kneppo, P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Physiological research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sedova, K A</au><au>Azarov, J E</au><au>Arteyeva, N V</au><au>Ovechkin, A O</au><au>Vaykshnorayte, M A</au><au>Vityazev, V A</au><au>Bernikova, O G</au><au>Shmakov, D N</au><au>Kneppo, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of electrocardiographic T-wave flattening in diabetes mellitus: experimental and simulation study</atitle><jtitle>Physiological research</jtitle><addtitle>Physiol Res</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>66</volume><issue>5</issue><spage>781</spage><epage>789</epage><pages>781-789</pages><issn>0862-8408</issn><eissn>1802-9973</eissn><abstract>In the present study we investigated the contribution of ventricular repolarization time (RT) dispersion (the maximal difference in RT) and RT gradients (the differences in RT in apicobasal, anteroposterior and interventricular directions) to T-wave flattening in a setting of experimental diabetes mellitus. In 9 healthy and 11 diabetic (alloxan model) open-chest rabbits, we measured RT in ventricular epicardial electrograms. To specify the contributions of apicobasal, interventricular and anteroposterior RT gradients and RT dispersion to the body surface potentials we determined T-wave voltage differences between modified upper- and lower-chest precordial leads (T-wave amplitude dispersions, TWAD). Expression of RT gradients and RT dispersion in the correspondent TWAD parameters was studied by computer simulations. Diabetic rabbits demonstrated flattened T-waves in precordial leads associated with increased anteroposterior and decreased apicobasal RT gradients (P<0.05) due to RT prolongation at the apex. For diabetics, simulations predicted the preserved T-vector length and altered sagittal and longitudinal TWAD proven by experimental measurements. T-wave flattening in the diabetic rabbits was not due to changes in RT dispersion, but reflected the redistributed ventricular repolarization pattern with prolonged apical repolarization resulting in increased anteroposterior and decreased apicobasal RT gradients.</abstract><cop>Czech Republic</cop><pub>Institute of Physiology</pub><pmid>28730829</pmid><doi>10.33549/physiolres.933494</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0862-8408 |
ispartof | Physiological research, 2017-01, Vol.66 (5), p.781-789 |
issn | 0862-8408 1802-9973 |
language | eng |
recordid | cdi_proquest_journals_1992863578 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Blood Glucose - metabolism Body Surface Potential Mapping - methods Cardiac arrhythmia Chest Diabetes Diabetes mellitus Diabetes Mellitus, Experimental - blood Diabetes Mellitus, Experimental - physiopathology Electrocardiography Electrocardiography - methods Female Heart Laboratory animals Male Mathematical models Rabbits Rodents Studies Ventricle |
title | Mechanism of electrocardiographic T-wave flattening in diabetes mellitus: experimental and simulation study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20electrocardiographic%20T-wave%20flattening%20in%20diabetes%20mellitus:%20experimental%20and%20simulation%20study&rft.jtitle=Physiological%20research&rft.au=Sedova,%20K%20A&rft.date=2017-01-01&rft.volume=66&rft.issue=5&rft.spage=781&rft.epage=789&rft.pages=781-789&rft.issn=0862-8408&rft.eissn=1802-9973&rft_id=info:doi/10.33549/physiolres.933494&rft_dat=%3Cproquest_cross%3E1992863578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992863578&rft_id=info:pmid/28730829&rfr_iscdi=true |